








中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (11): 1-7.DOI: 10.13304/j.nykjdb.2025.0310
• 绿色水产养殖专栏 •
周文豪1(
), 张玉涵2(
), 孟德龙1, 梁慧1, 张元培1, 杨雅麟1, 张震1, 药园园1, 冉超1, 周志刚1,2(
)
收稿日期:2025-04-22
接受日期:2025-09-18
出版日期:2025-11-15
发布日期:2025-11-17
通讯作者:
周志刚
作者简介:周文豪 E-mail:1187694122@qq.com基金资助:
Wenhao ZHOU1(
), Yuhan ZHANG2(
), Delong MENG1, Hui LIANG1, Yuanpei ZHANG1, Yalin YANG1, Zhen ZHANG1, Yuanyuan YAO1, Chao RAN1, Zhigang ZHOU1,2(
)
Received:2025-04-22
Accepted:2025-09-18
Online:2025-11-15
Published:2025-11-17
Contact:
Zhigang ZHOU
摘要:
贝莱斯芽孢杆菌(Bacillus velezensis)作为新型的益生菌在工业发酵、农业生产等领域应用广泛。详细介绍了贝莱斯芽孢杆菌产活性物质的功能,产酶和抗病等;综述了其在畜禽养殖和水产养殖的最新应用现状;并针对贝莱斯芽孢杆菌目前存在的问题,展望了未来的研究重点和发展方向,为贝莱斯芽孢杆菌的深入研究以及实际应用提供参考。
中图分类号:
周文豪, 张玉涵, 孟德龙, 梁慧, 张元培, 杨雅麟, 张震, 药园园, 冉超, 周志刚. 贝莱斯芽孢杆菌在养殖业中的应用研究进展[J]. 中国农业科技导报, 2025, 27(11): 1-7.
Wenhao ZHOU, Yuhan ZHANG, Delong MENG, Hui LIANG, Yuanpei ZHANG, Yalin YANG, Zhen ZHANG, Yuanyuan YAO, Chao RAN, Zhigang ZHOU. Research Progress on Application of Bacillus velezensis in Animal Husbandry[J]. Journal of Agricultural Science and Technology, 2025, 27(11): 1-7.
| [1] | SURESH G, DAS R K, KAUR BRAR S, et al.. Alternatives to antibiotics in poultry feed: molecular perspectives [J]. Crit. Rev. Microbiol., 2018, 44(3): 318-335. |
| [2] | SANYAL D, SHIVRAM A, PANDEY D, et al.. Mapping dihydropteroate synthase evolvability through identification of a novel evolutionarily critical substructure [J/OL]. Int. J. Biol.Macromol., 2025,311: 143325 [2025-03-20]. . |
| [3] | NADELLA R K, PANDA S K, BADIREDDY M R, et al.. Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment [J]. Environ. Sci. Pollut. Res. Int., 2022, 29(25): 37527-37542. |
| [4] | VERMA J, DEVI S, NARANG A, et al.. Probiotic potential of Streptomyces levis strain HFM-2 isolated from human gut and its antibiofilm properties against pathogenic bacteria [J/OL].BMC Microbiol., 2024, 24(1): 208 [2025-03-20]. . |
| [5] | AMIIN M K, LAHAY A F, PUTRIANI R B, et al.. The role of probiotics in vannamei shrimp aquaculture performance-a review [J]. Vet. World, 2023, 16(3): 638-649. |
| [6] | ZHU C Y, LUO Y Q, XU K J, et al.. Effects of dietary supplementation with Bacillus subtilis and bacteriophage on growth performance,intestinal morphology and microbiota structure in 0-90 d MaGang geese [J/OL]. Front. Nutr., 2025,12: 1537724 [2025-03-20]. . |
| [7] | KOIKE S, UENO M, ASHIDA N, et al.. Effect of Bacillus subtilis C-3102 supplementation in milk replacer on growth and rumen microbiota in preweaned calves [J/OL]. Anim. Sci. J., 2021, 92(1): e13580 [2025-03-20].. |
| [8] | TANG Y Y, LI T, HUANG Y H, et al.. Comprehensive phenotypic characterization and genomic analysis unveil the probiotic potential of Bacillus velezensis K12 [J/OL]. Animals, 2025, 15(6): 798 [2025-03-20]. . |
| [9] | DUNLAP C A, BOWMAN M J, SCHISLER D A, et al.. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis;reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis [J]. Int. J. Syst.Evol. Microbiol., 2016, 66(6): 2438-2443. |
| [10] | ZHANG J X, WU J Y, CHEN Y Y, et al.. Complete genome analysis of Bacillus velezensis HF-14, 109 with potential for broad-spectrum antimicrobial activity and high enzyme-producing ability from common carp (Cyprinus carpio L.) [J/OL]. Mol.Genet. Genomics, 2025, 300(1): 26 [2025-03-20]. . |
| [11] | HEO S J, KIM A J, PARK M J, et al.. Nutritional and functional properties of fermented mixed grains by solid-state fermentation with Bacillus amyloliquefaciens 245 [J/OL]. Foods,2020, 9(11): 1693 [2025-03-20]. . |
| [12] | WANG Z M, WANG S, BAI H, et al.. Characterization and application of Bacillus velezensis D6 co-producing α-amylase and protease [J]. J. Sci. Food Agric., 2024, 104(15): 9617-9629. |
| [13] | WANG J, XIE X Y, LI B, et al.. Complete genome analysis and antimicrobial mechanism of Bacillus velezensis GX0002980 reveals its biocontrol potential against mango anthracnose disease [J/OL]. Microbiol. Spectr., 2025, 13(6): e0268524 [2025-03-20]. . |
| [14] | HAN D M, BAEK J H, CHUN B H, et al.. Fermentative features of Bacillus velezensis and Leuconostoc mesenteroides in doenjang-meju,a Korean traditional fermented soybean brick [J]. Food Microbiol., 2023, 110: 104186-104198. |
| [15] | TRIPATHI V, GAUR V K, THAKUR R S, et al.. Assessing the half-life and degradation kinetics of aliphatic and aromatic hydrocarbons by bacteria isolated from crude oil contaminated soil [J/OL]. Chemosphere, 2023, 337: 139264 [2025-03-20].. |
| [16] | BISHOP G, STYLES D, LENS P N L. Recycling of European plastic is a pathway for plastic debris in the ocean [J/OL].Environ. Int., 2020, 142: 105893 [2025-03-20]. . |
| [17] | LIU X R, ZHANG Y M, SUN Q F, et al.. Rapid colonization and biodegradation of untreated commercial polyethylene wrap by a new strain of Bacillus velezensis C5 [J/OL]. J. Environ.Manage., 2022, 301:113848 [2025-03-20]. . |
| [18] | HUANG L, MENG D, TIAN Q P, et al.. Characterization of a novel carboxylesterase from Bacillus velezensis SYBC H47 and its application in degradation of phthalate esters [J]. J. Biosci.Bioeng., 2020, 129(5): 588-594. |
| [19] | JIANG N, WANG T J, FANG Y, et al.. A novel protein demonstrating antibacterial activity against multidrug-resistant Escherichia coli purified from Bacillus velezensis CB6 [J]. Foods,2025, 14(7): 1255-1268. |
| [20] | CHEN J L, FENG Y Z, MA J C, et al.. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis B115 [J].Sci. Rep., 2025, 15: 10666-10678. |
| [21] | ZHAO Q, ALI Q, YUAN W W, et al.. Role of iturin from Bacillus velezensis DMW1 in suppressing growth and pathogenicity of Plectosphaerella cucumerina in tomato by reshaping the rhizosphere microbial communities [J/OL].Microbiol. Res., 2025, 296: 128150 [2025-03-20]. . |
| [22] | YU F T, SHEN Y Y, CHEN S L, et al.. Analysis of the genomic sequences and metabolites of Bacillus velezensis YA215 [J].Biochem. Genet., 2024, 62(6): 5073-5091. |
| [23] | EMAM A M, DUNLAP C A. Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; a potential probiotic to control pathogens in aquaculture [J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2041-2052. |
| [24] | PUAN S L, ERRIAH P, YAHAYA N M, et al.. Genome-guided identification and characterisation of broad-spectrum antimicrobial compounds of Bacillus velezensis strain PD9 isolated from stingless bee Propolis [J/OL]. Probiotics Antimicrob. Proteins, 2025, 25: 10451-3 [2025-03-20]. . |
| [25] | HU H, WU C Y, GE F L, et al.. Poly-γ-glutamic acid-producing Bacillus velezensis fermentation can improve the feed properties of soybean meal [J/OL]. Food Biosci., 2023, 53:102503 [2025-03-20]. . |
| [26] | ZENG J R, HUANG W Q, TIAN X F, et al.. Brewer’s spent grain fermentation improves its soluble sugar and protein as well as enzymatic activities using Bacillus velezensis [J]. Process. Biochem., 2021, 111: 12-20. |
| [27] | LIU Y, XIONG M Q, HU X, et al.. Dietary Bacillus velezensis KNF-209 supplementation improves growth performance,enhances immunity,and promotes gut health in broilers [J].Poult. Sci., 2024, 103(9): 103946-103958. |
| [28] | LI C, LI S Z, DANG G Q, et al.. Screening and characterization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property [J/OL]. Front. Microbiol., 2023, 14: 1143265 [2025-03-20]. . |
| [29] | QUACH N T, VU T H N, NGUYEN N A, et al.. Phenotypic features and analysis of genes supporting probiotic action unravel underlying perspectives of Bacillus velezensis VTX9 as a potential feed additive for swine [J/OL]. Ann. Microbiol.,2021, 71(1): 36 [2025-03-20]. . |
| [30] | LI Y Q, LI X, JIA D, et al.. Complete genome sequence and antimicrobial activity of Bacillus velezensis J T3-1, a microbial germicide isolated from yak feces [J/OL]. 3 Biotech, 2020, 10(5): 231 [2025-03-20]. . |
| [31] | JI L B, SHEN J K, LIU C C, et al.. Dietary Bacillus velezensis improves piglet intestinal health and antioxidant capacity via regulating the gut microbiota [J]. Int. J. Mol. Sci., 2025, 26(12):5875-5889. |
| [32] | AFROJ S, BRANNEN A D, NASRIN S, et al.. Bacillus velezensis AP183 inhibits Staphylococcus aureus biofilm formation and proliferation in murine and bovine disease models [J/OL]. Front.Microbiol., 2021, 12: 746410 [2025-03-20]. . |
| [33] | TSAI C Y, HU S Y, SANTOS H M, et al.. Probiotic supplementation containing Bacillus velezensis enhances expression of immune regulatory genes against pigeon circovirus in pigeons (Columba livia) [J]. J. Appl. Microbiol., 2021, 130(5): 1695-1704. |
| [34] | ZHENG J, ZENG H, ZHANG Q, et al.. Effects of intranasal administration with a symbiotic strain of Bacillus velezensis NSV2 on nasal cavity mucosal barrier in lambs [J/OL]. Vet. Res.Commun., 2024, 49(1): 21 [2025-03-20].. |
| [35] | GAO X Y, LIU Y, MIAO L L, et al.. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain,Bacillus velezensis V4 [J]. Appl. Microbiol.Biotechnol., 2017, 101(9): 3759-3768. |
| [36] | THURLOW C M, WILLIAMS M A, CARRIAS A, et al.. Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication [J]. Aquaculture, 2019, 503: 347-356. |
| [37] | YANG H W, DU D D, ZHANG Q S, et al.. Dietary Bacillus velezensis T23 fermented products supplementation improves growth,hepatopancreas and intestine health of Litopenaeus vannamei [J/OL]. Fish Shellfish. Immunol., 2024, 149: 109595 [2025-03-20]. . |
| [38] | ABDELSAMAD A E M, SAID R E M, ASSAS M, et al.. Effects of dietary supplementation with Bacillus velezensis on the growth performance, compositionbody, antioxidant, immune-related gene expression,and histology of Pacific white shrimp,Litopenaeus vannamei [J/OL]. BMC Vet. Res., 2024, 20(1): 368 [2025-03-20]. . |
| [39] | JI Z H, LU X, XUE M Y, et al.. The probiotic effects of host-associated Bacillus velezensis in diets for hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂) [J]. Anim.Nutr., 2023, 15: 114-125. |
| [40] | TAO B Y, ZHANG C X, LI X, et al.. Postbiotics of Bacillus subtilis LCBS1 have beneficial effects on bullfrogs (Lithobates catesbeianus) [J/OL]. Aquaculture, 2023, 574: 739699 [2025-03-20]. . |
| [41] | MONZÓN-ATIENZA L, BRAVO J, TORRECILLAS S, et al..Isolation and characterization of a Bacillus velezensis D-18 strain, as a potential probiotic in European seabass aquaculture [J]. Probiotics Antimicrob. Proteins, 2021, 13(5): 1404-1412. |
| [42] | YI Y L, ZHANG Z H, ZHAO F, et al.. Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus [J]. Fish Shellfish. Immunol., 2018, 78: 322-330. |
| [43] | CAO L N, PAN L F, GONG L, et al.. Interaction of a novel Bacillus velezensis (BvL03) against Aeromonas hydrophila in vitro and in vivo in grass carp [J]. Appl.Microbiol. Biotechnol.,2019, 103(21/22): 8987-8999. |
| [44] | ZHANG D X, KANG Y H, ZHAN S, et al.. Effect of Bacillus velezensis on Aeromonas veronii-Induced intestinal mucosal barrier function damage and inflammation in crucian carp (Carassius auratus) [J/OL]. Front.Microbiol., 2019, 10: 2663 [2025-03-20]. . |
| [45] | SAM-ON M F S, MUSTAFA S, YUSOF M T, et al.. Evaluation of three Bacillus spp. isolated from the gut of giant freshwater prawn as potential probiotics against pathogens causing vibriosis and aeromonosis [J/OL]. Microb. Pathog., 2022, 164:105417 [2025-03-20]. . |
| [46] | WU Z B, QI X Z, QU S Y, et al.. Dietary supplementation of Bacillus velezensis B8 enhances immune response and resistance against Aeromonas veronii in grass carp [J]. Fish Shellfish. Immunol., 2021, 115: 14-21. |
| [47] | ZHANG D F, GAO Y X, KE X L, et al.. Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens,growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus) [J]. Appl. Microbiol. Biotechnol., 2019, 103(21/22): 9023-9035. |
| [48] | ZHAO C Y, MEN X H, DANG Y J, et al.. Probiotics mediate intestinal microbiome and microbiota-derived metabolites regulating the growth and immunity of rainbow trout (Oncorhynchus mykiss) [J/OL]. Microbiol. Spectr., 2023, 11(2):e03980-22 [2025-03-20]. . |
| [49] | AMOAH K, TAN B P, ZHANG S, et al.. Host gut-derived Bacillus probiotics supplementation improves growth performance,serum and liver immunity,gut health, and resistive capacity against Vibrio harveyi infection in hybrid grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus) [J]. Anim. Nutr., 2023, 14: 163-184. |
| [1] | 李海燕, 张婷, 李新畅, 张玲, 王培, 鲍民胡. 一株拮抗葡萄灰霉病菌的贝莱斯芽孢杆菌筛选及鉴定[J]. 中国农业科技导报, 2025, 27(8): 110-118. |
| [2] | 张贵谦, 张力, 王谦, 刘彩云. 添加黄芪多糖对中华蜜蜂蜂群发展和产蜜量的影响[J]. 中国农业科技导报, 2025, 27(5): 72-80. |
| [3] | 陈沛良, 徐民俊. 高压静电场及其在水产上的研究和应用进展[J]. 中国农业科技导报, 2024, 26(2): 13-19. |
| [4] | 孙锐康, 付京花, 徐民俊. 鱼菜共生复合系统研究进展[J]. 中国农业科技导报, 2023, 25(9): 227-233. |
| [5] | 李晓东, 苏丽, 李晓捷, 李杰, 徐英江, 常丽荣, 于仁成, 杨德周, 逄少军. 2021—2022年山东荣成海带产区大规模溃烂灾害综合调查分析[J]. 中国农业科技导报, 2023, 25(1): 206-222. |
| [6] | 欧密, 赵建, 罗青, 刘海洋, 黄容, 汪亚平, 陈昆慈. 鳢性别控制育种及应用研究进展[J]. 中国农业科技导报, 2022, 24(2): 11-25. |
| [7] | 李雪, 刘子飞, 赵明军, 徐乐俊, 孙慧武. 我国水产养殖与捕捞业“双碳”目标及实现路径[J]. 中国农业科技导报, 2022, 24(11): 13-26. |
| [8] | 潘梦诗, 郭文阳, 周留柱, 邓丽, 苗建利, 徐宏光, 张宗源, 亓兰达. 贝莱斯芽孢杆菌菌剂对花生白绢病的田间防效及作用机理研究[J]. 中国农业科技导报, 2022, 24(11): 130-136. |
| [9] | 蔡振鑫, 刘春红, . 基于神经网络的多特征结合法鲫鱼质量估计[J]. 中国农业科技导报, 2021, 23(12): 109-115. |
| [10] | 陈澜1,2,杨信廷1,2,孙传恒2,王以忠1,徐大明2,周超2*. 基于自适应模糊神经网络的鱼类投喂预测方法研究[J]. 中国农业科技导报, 2020, 22(2): 91-100. |
| [11] | 高伟1,高磊2,周勇3,王利鹤1,牛文学1,赵永来1,刘文枝3*. 基于ZigBee的水产养殖水质控制管理系统设计[J]. 中国农业科技导报, 2018, 20(7): 74-82. |
| [12] | 李新宇1,孜力汗1,2*,张宝会1,杨闯1,徐永平1,2,李淑英2. 噬菌体在水产养殖中应用的研究进展[J]. 中国农业科技导报, 2016, 18(5): 187-192. |
| [13] | 张骞月1,赵婉婉1,吴伟1,2*. 水产养殖环境中抗生素抗性基因污染及其研究进展[J]. 中国农业科技导报, 2015, 17(6): 125-134. |
| [14] | 郑瑞珠1,2,何夙旭2,杨雅麟2,谢响明1*,周志刚2*. 益生乳酸菌水产动物消化道黏附机制研究进展[J]. , 2014, 16(3): 134-142. |
| [15] | 吴伟1,2,范立民1,2. 水产养殖环境的污染及其控制对策[J]. , 2014, 16(2): 26-34. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||