中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (3): 188-197.DOI: 10.13304/j.nykjdb.2021.0748
刘云飞1(), 韦凤杰2, 夏茂林1, 于兆锦1, 夏昊3, 衣春宇1, 常剑波4(
), 姬小明1(
)
收稿日期:
2021-08-27
接受日期:
2022-01-18
出版日期:
2023-03-15
发布日期:
2023-05-22
通讯作者:
常剑波,姬小明
作者简介:
刘云飞 E-mail:1448789042@qq.com
基金资助:
Yunfei LIU1(), Fengjie WEI2, Maolin XIA1, Zhaojin YU1, Hao XIA3, Chunyu YI1, Jianbo CHANG4(
), Xiaoming JI1(
)
Received:
2021-08-27
Accepted:
2022-01-18
Online:
2023-03-15
Published:
2023-05-22
Contact:
Jianbo CHANG,Xiaoming JI
摘要:
为研究新型复合水凝胶对镉(Cd)胁迫烟草幼苗的缓解作用及其对Cd的吸附机理,以合成的新型生物炭复合水凝胶(PVA/AA/B)和改性生物炭复合水凝胶(PVA/AA/MB)为材料,开展Cd吸附试验和烟草盆栽试验。结果表明,2种复合水凝胶对Cd的吸附方式均以多分子层吸附为主,PVA/AA/B和PVA/AA/MB对Cd的最大吸附量分别为314.17和371.83 mg·g-1;与CK相比,PVA/AA/B和PVA/AA/MB处理的植株鲜重分别显著增加172.94%和231.32%,干重分别显著增加135.29%和188.24%,土壤有效态Cd含量分别显著降低36.27%和65.18%,植株Cd含量分别显著降低54.47%和63.23%,叶片的SPAD值及抗氧化酶活性显著提高。2种合成的新型材料均能有效缓解Cd胁迫对烟草幼苗的毒害,促进Cd胁迫下烟草幼苗的生长,减少烟草中Cd积累,其中PVA/AA/MB效果更好,可为缓解烟草Cd胁迫提供理论依据。
中图分类号:
刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197.
Yunfei LIU, Fengjie WEI, Maolin XIA, Zhaojin YU, Hao XIA, Chunyu YI, Jianbo CHANG, Xiaoming JI. Alleviative Effect of New Composite Hydrogels on Cadmium Stress Tobacco Seedlings[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 188-197.
图1 PVA/AA、PVA/AA/B和PVA/AA/MB的红外光谱图及吸附Cd+前后的红外光谱对比
Fig.1 FTIR diagram of PVA/AA, PVA/AA/B and PVA/AA/MB and FTIR comparison diagram before and after adsorption of Cd+
指标 Idex | 材料Materials | ||||
---|---|---|---|---|---|
B | MB | PVA/AA | PVA/AA/B | PVA/AA/MB | |
Qe /(mg·g-1) | 38.67 e | 48.61 d | 60.27 c | 130.89 b | 187.45 a |
去除率 Removal rate/% | 19.34 e | 24.30 d | 30.14 c | 65.44 b | 93.72 a |
表1 不同材料对水溶液中Cd的平衡吸附量及去除率
Table 1 Equilibrium adsorption capacity and removal rate of Cd in aqueous solution by different materials
指标 Idex | 材料Materials | ||||
---|---|---|---|---|---|
B | MB | PVA/AA | PVA/AA/B | PVA/AA/MB | |
Qe /(mg·g-1) | 38.67 e | 48.61 d | 60.27 c | 130.89 b | 187.45 a |
去除率 Removal rate/% | 19.34 e | 24.30 d | 30.14 c | 65.44 b | 93.72 a |
材料 Materials | Langmuir等温吸附模型 Langmuir isothermal adsorption model | Freundlich等温吸附模型 Freundlich isothermal adsorption model | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qm/(mg·g-1) | KL/(L·mg-1) | R12 | KF/(mg1-n·g-1·L-n) | 1/n | R22 | ||
PVA/AA | 271.15 | 0.038 | 0.983 7** | 40.94 | 0.356 7 | 0.923 5** | 6 |
PVA/AA/B | 314.17 | 0.046 | 0.955 2** | 47.79 | 0.372 4 | 0.991 5** | 6 |
PVA/AA/MB | 371.83 | 0.178 | 0.938 7** | 101.91 | 0.310 5 | 0.994 7** | 6 |
表2 PVA/AA、PVA/AA/B、PVA/AA/MB吸附等温线拟合参数
Table 2 Fitting parameters of adsorption isotherms for PVA/AA, PVA/AA/B and PVA/AA/MB
材料 Materials | Langmuir等温吸附模型 Langmuir isothermal adsorption model | Freundlich等温吸附模型 Freundlich isothermal adsorption model | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qm/(mg·g-1) | KL/(L·mg-1) | R12 | KF/(mg1-n·g-1·L-n) | 1/n | R22 | ||
PVA/AA | 271.15 | 0.038 | 0.983 7** | 40.94 | 0.356 7 | 0.923 5** | 6 |
PVA/AA/B | 314.17 | 0.046 | 0.955 2** | 47.79 | 0.372 4 | 0.991 5** | 6 |
PVA/AA/MB | 371.83 | 0.178 | 0.938 7** | 101.91 | 0.310 5 | 0.994 7** | 6 |
材料 Material | 准一级动力学模型 Pseudo-first-order plots | 准二级动力学模型 Pseudo-second-order plots | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qe/(mg·g-1) | k1/h-1 | R32 | Qe/(mg·g-1) | k2/(10-4·g·mg-1·h-1) | R42 | ||
PVA/AA | 59.03 | 0.016 | 0.995 7** | 66.56 | 2.96 | 0.958 7** | 8 |
PVA/AA/B | 134.81 | 0.006 | 0.996 1** | 169.46 | 3.43 | 0.987 9** | 8 |
PVA/AA/MB | 197.63 | 0.005 | 0.993 4** | 255.98 | 1.78 | 0.989 8** | 8 |
表3 PVA/AA、PVA/AA/B、PVA/AA/MB的吸附动力学拟合参数
Table 3 Adsorption kinetics fitting parameters of PVA/AA, PVA/AA/B and PVA/AA/MB
材料 Material | 准一级动力学模型 Pseudo-first-order plots | 准二级动力学模型 Pseudo-second-order plots | 样本数 Sample number | ||||
---|---|---|---|---|---|---|---|
Qe/(mg·g-1) | k1/h-1 | R32 | Qe/(mg·g-1) | k2/(10-4·g·mg-1·h-1) | R42 | ||
PVA/AA | 59.03 | 0.016 | 0.995 7** | 66.56 | 2.96 | 0.958 7** | 8 |
PVA/AA/B | 134.81 | 0.006 | 0.996 1** | 169.46 | 3.43 | 0.987 9** | 8 |
PVA/AA/MB | 197.63 | 0.005 | 0.993 4** | 255.98 | 1.78 | 0.989 8** | 8 |
根系指标 Root index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | T5 | |
鲜重 Fresh weight/g | 0.728 d | 1.406 c | 1.584 c | 1.876 b | 1.987 b | 2.412 a |
干重 Dry weight/g | 0.085 d | 0.131 c | 0.155 bc | 0.187 b | 0.200 b | 0.245 a |
总根长 Total length of root/cm | 15.37 d | 28.14 c | 25.75 c | 34.47 b | 46.16 a | 49.34 a |
根表面积 Root surface area/cm2 | 1.77 e | 3.45 d | 3.48 d | 5.92 c | 6.95 b | 8.89 a |
根体积 Root volume/(10-3·cm-3) | 18.88 d | 43.68 c | 42.82 cd | 59.02 c | 84.66 b | 118.49 a |
平均根直径 Average root diameter/mm | 0.477 c | 0.519 bc | 0.515 bc | 0.530 b | 0.543 ab | 0.576 a |
根尖数 Number of root tips | 29 f | 52 e | 94 d | 159 c | 179 b | 205 a |
表4 不同处理下生物量积累及根系指标
Table 4 Biomass accumulation and root indexes under different treatments
根系指标 Root index | 处理 Treatment | |||||
---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | T5 | |
鲜重 Fresh weight/g | 0.728 d | 1.406 c | 1.584 c | 1.876 b | 1.987 b | 2.412 a |
干重 Dry weight/g | 0.085 d | 0.131 c | 0.155 bc | 0.187 b | 0.200 b | 0.245 a |
总根长 Total length of root/cm | 15.37 d | 28.14 c | 25.75 c | 34.47 b | 46.16 a | 49.34 a |
根表面积 Root surface area/cm2 | 1.77 e | 3.45 d | 3.48 d | 5.92 c | 6.95 b | 8.89 a |
根体积 Root volume/(10-3·cm-3) | 18.88 d | 43.68 c | 42.82 cd | 59.02 c | 84.66 b | 118.49 a |
平均根直径 Average root diameter/mm | 0.477 c | 0.519 bc | 0.515 bc | 0.530 b | 0.543 ab | 0.576 a |
根尖数 Number of root tips | 29 f | 52 e | 94 d | 159 c | 179 b | 205 a |
图5 不同处理下烟草幼苗抗氧化酶活性注:同一指标中不同小写字母表示处理间在P<0.05水平差异显著。
Fig.5 Antioxidant enzyme activities of tobacco seedlings under different treatmentsNote: Different lowercase letters in same index indicate significant differences between treatments at P<0.05 level.
图6 不同处理下叶片SPAD值、土壤有效态镉和植株镉含量注:同一指标中不同小写字母表示处理间在P<0.05水平差异显著。
Fig.6 Leaf SPAD value, soil available Cd and plant Cd contents under different treatmentsNote: Different lowercase letters in same index indicate significant differences between treatments at P<0.05 level.
1 | ZHAO F J, MA Y, ZHU Y G, et al.. Soil contamination in China: current status and mitigation strategies [J]. Environ. Sci. Technol., 2015, 49(2):750-759. |
2 | 陈能场,郑煜基,何晓峰,等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al.. Analysis of the bulletin of national soilpollution survey [J]. J. Agro-Environ. Sci., 2017, 36(9):1689-1692. | |
3 | RAI V, KHATOON S, BISHT S S, et al.. Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn [J]. Chemosphere, 2005, 61(11):1644-1650. |
4 | RIZWAN M, ALI S, REHMAN M, et al.. A critical review on the effects of zinc at toxic levels of cadmium in plants [J]. Environ. Sci. Pollut. Res., 2019, 26(7):6279-6289. |
5 | ROSEN K, ERIKSSON J, VINICHUK M. Uptake and translocation of 109Cd and stable Cd within tobacco plants [J]. J. Environ. Radioactiv., 2012, 113:16-20. |
6 | 刘领,悦飞雪,李继伟,等. 镉胁迫下生物炭与锌/钾叶面肥促进烟草生长降低镉富集的协同效应[J]. 植物营养与肥料学报, 2019, 25(6):982-990. |
LIU L, YUE F X, LI J W, et al.. Interaction between biochar and Zn or K foliar fertilizer on the growth and Cd uptake of tobacco under cadmium stress [J]. Plant Nutr. Fert. Sci., 2019, 25(6):982-990. | |
7 | MOHAN D, KUMAR H, SARSWAT A, et al.. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars [J]. Chem. Eng. J., 2014, 236:513-528. |
8 | JARUP L, AKESSON A. Current status of cadmium as an environmental health problem [J]. Toxicol. Appl. Pharm., 2009, 238(3):201-208. |
9 | SARMAH D, KARAK N. Double network hydrophobic starch based amphoteric hydrogel as an effective adsorbent for both cationic and anionic dyes [J/OL]. Carbohyd. Polym., 2020, 242:116320 [2021-08-26]. . |
10 | WANG H, DING J, CHI Q, et al.. The effect of biochar on soil-plant-earthworm-bacteria system in metal(loid) contaminated soil [J/OL]. Environ. Pollut., 2020, 263:114610 [2021-08-26]. . |
11 | WIBOWO N, SETYADHI L, WIBOWO D, et al.. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption [J]. J. Hazard. Mater., 2007, 146(1-2):237-242. |
12 | 王瑞峰, 周亚男, 孟海波, 等. 不同改性生物炭对溶液中Cd的吸附研究[J].中国农业科技导报,2016,18(6):103-111. |
WANG R F, ZHOU Y N, MENG H B, et al.. Adsorption of Cd in solution by different modified biochar [J]. J. Agric. Sci. Technol., 2016, 18(6):103-111. | |
13 | 况帅,冯迪,宋科,等. 低钾胁迫对烟草幼苗活性氧及抗氧化酶系统的影响[J]. 中国烟草学报, 2018, 24(2):48-54. |
KUANG S, FENG D, SONG K, et al.. Effect of potassium deficiency stress on active oxygen and antioxidant enzyme system in tobacco seedlings [J]. Acta Tab. Sin., 2018, 24(2):48-54. | |
14 | 刘宛宜,王天野,王铖熠,等. 聚(丙烯酸酸-co-丙烯酰胺)水凝胶对阳离子染料亚甲基蓝和孔雀石绿吸附性能的研究[J]. 分析化学, 2019, 47(11):1785-1793. |
LIU W Y, WANG T Y, WANG C Y, et al.. Study of adsorption performance of cationic dyes methylene blue and malachite green by poly (acrylate-co-acrylamide) hydrogel [J]. Chin. J. Anal. Chem., 2019, 47(11):1785-1793. | |
15 | PAULINO A T, GUILHERME M R, REIS A V, et al.. Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation [J]. J. Hazard. Mater., 2007, 147(1-2):139-147. |
16 | 张立志,易平,方丹丹,等. 超顺磁性纳米Fe3O4@SiO2功能化材料对镉的吸附机制[J]. 环境科学, 2021, 42(6):2917-2927. |
ZHANG L Z, YI P, FANG D D, et al.. Adsorption mechanism of cadmium by superparamangnetic nano-Fe3O4@SiO2 functionalized materials [J]. Environ. Sci., 2021, 42(6):2917-2927. | |
17 | 庞发虎,吴雪姣,孔雪菲,等. 重金属钝化剂阻控生菜Cd吸收的功能稳定性和适用性[J]. 环境科学, 2021, 42(5):2502-2511. |
PANG F H, WU X J, KONG X F, et al.. Functional stability and applicability of heavy metal passivators in reducing Cd uptake by lettuce [J]. Environ. Sci., 2021, 42(5):2502-2511. | |
18 | NOLAN A L, ZHANG H, MCLAUGHLIN M J. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques [J]. J. Environ. Qual., 2005, 34(2): 496-507. |
19 | 程启明,黄青,刘英杰,等. 花生壳与花生壳生物炭对镉离子吸附性能研究[J]. 农业环境科学学报, 2014, 33(10):2022-2029. |
CHENG Q M, HUANG Q, LIU Y J, et al.. Adsorption of cadmium (Ⅱ) on peanut shell and its biochar [J]. J. Agro-Environ. Sci., 2014, 33(10):2022-2029. | |
20 | WAN S, HE F, WU J, et al.. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites [J]. J. Hazard. Mater., 2016, 314:32-40. |
21 | 邢瑶,马兴华. 氮素形态对植物生长影响的研究进展[J]. 中国农业科技导报, 2015, 17(2):109-117. |
XING Y, MA X H. Research progress on effect of nitrogen form on plant growth [J]. J. Agric. Sci. Technol., 2015, 17(2):109-117. | |
22 | GUO T R, ZHANG G P, ZHOU M X, et al.. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars [J]. Pedosphere, 2007, 17(4): 505-512. |
23 | 刘庆,董元杰,刘双,等. 外源水杨酸(SA)对NaCl胁迫下棉花幼苗生理生化特性的影响[J]. 水土保持学报, 2014, 28(2):165-168, 174. |
LIU Q, DONG Y J, LIU S, et al.. Effects of exogenous salicylic acid on the physiological and biochemical characteristics of contton seedlings under salt stress [J]. J. Soil Water Conserv., 2014, 28(2):165-168, 174. | |
24 | 杨彪,杜荣宇,杨玉,等. 便携式植物叶片叶绿素含量无损检测仪设计与试验[J]. 农业机械学报, 2019, 50(12):180-186. |
YANG B, DU R Y, YANG Y, et al.. Design of portable nondestructive detector for chlorophyll content of plant leaves [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(12):180-186. | |
25 | CHOPPALA G, SAIFULLAH, BOLAN N, et al.. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity [J]. Crit. Rev. Plant. Sci., 2014, 33(5):374-391. |
26 | 悦飞雪,李继伟,王艳芳,等. 施用秸秆生物炭和鸡粪对镉胁迫下玉米生长及镉吸收的影响[J]. 农业环境科学学报, 2018, 37(10):2118-2126. |
YUE F X, LI J W, WANG Y F, et al.. Effects of soil amendments with stalk-derived biochar and chicken manure on the growth and Cd uptake of maize under Cd stress [J]. J. Agro-Environ. Sci., 2018, 37(10):2118-2126. | |
27 | 刘彩凤,史刚荣,余如刚,等. 硅缓解植物镉毒害的生理生态机制[J]. 生态学报, 2017, 37(23):7799-7810. |
LIU C F, SHI G R, YU R G, et al.. Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants: a review [J]. Acta Ecol. Sin., 2017, 37(23):7799-7810. |
[1] | 庆福, 梁洪月, 孙静, 鲁新蕊, 梁运江. 生物炭-氮肥配施对东北黑土团聚体及有机碳含量的影响[J]. 中国农业科技导报, 2025, 27(6): 195-204. |
[2] | 侯赛赛, 仝姗姗, 王鹏企, 谢冰雪, 张瑞芳, 王鑫鑫. 生物炭和秸秆对不同作物生长性状和养分吸收的影响[J]. 中国农业科技导报, 2025, 27(4): 179-191. |
[3] | 张如艳, 李绅昊, 朱奇鹏, 冯太纲, 李红波, 邢泽炳, 羡瑜. 生物炭含量对园林绿化废弃物/聚乳酸复合材料物理力学性能影响[J]. 中国农业科技导报, 2025, 27(2): 192-200. |
[4] | 吕志伟, 李冬梅, 金梅娟, 张燕辉, 陶玥玥, 周新伟, 王海候. 热解温度及时间对生物炭理化性质及吸附性能的影响[J]. 中国农业科技导报, 2025, 27(2): 211-217. |
[5] | 邢卓冉, 丁松爽, 张凯, 马明, 郭文龙, 刘旭东, 时向东. 计算机视觉与深度学习技术在烟叶生产上的研究进展[J]. 中国农业科技导报, 2025, 27(1): 96-106. |
[6] | 史丹一, 邱禹, 黄成真, 王娟. 酸改性生物炭对滨海盐渍土壤水分入渗特性的影响[J]. 中国农业科技导报, 2024, 26(9): 183-192. |
[7] | 周喜新, 袁世林, 杨柳, 夏滔, 张毅, 范伟. 连作烟草根系分泌物鉴定及潜在化感物质的筛选研究[J]. 中国农业科技导报, 2024, 26(7): 136-146. |
[8] | 蒲子天, 王红, 赵斌, 王鑫鑫. 不同土壤改良物料对连作黄芩生长及土壤酶活性的影响[J]. 中国农业科技导报, 2024, 26(7): 189-198. |
[9] | 付彦博, 冷冰冰, 扁青永, 董志多, 刘国宏, 李海峰, 温云梦, 郭文博, 张万旭. 生物炭和油菜幼苗对土壤重金属镉污染的钝化效应[J]. 中国农业科技导报, 2024, 26(6): 183-190. |
[10] | 赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214. |
[11] | 刘化冰, 党伟, 李奇, 张晓兵, 徐志强, 钟永健, 任志广, 张勇刚, 袁凯龙, 杨浩, 王辉, 孙聚涛. 烟草品种间氮素吸收和同化差异研究[J]. 中国农业科技导报, 2024, 26(11): 66-78. |
[12] | 常峻嘉, 盖佳鑫, 陶刚, 莫转龙海. 哈茨木霉菌对烟草的促生及其黑胫病的诱导抗性评价[J]. 中国农业科技导报, 2024, 26(10): 168-176. |
[13] | 徐皖菁, 彭芳, 赵豆豆, 罗姣姣, 陶珊, 廖海浪, 毛常清, 吴宇, 朱秀, 徐正君, 张超. 基于转录组和代谢组解析川芎对镉胁迫的响应机制[J]. 中国农业科技导报, 2024, 26(10): 98-109. |
[14] | 唐天君, 陈洋, 胡军, 江浩田. 基于无人机影像数据的烟草精准识别方法研究[J]. 中国农业科技导报, 2024, 26(10): 145-157. |
[15] | 高静, 徐明岗, 李然, 蔡泽江, 孙楠, 张强, 郑磊. 整合分析生物炭施用对土壤pH的影响[J]. 中国农业科技导报, 2023, 25(9): 186-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||