








中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (10): 161-168.DOI: 10.13304/j.nykjdb.2022.0572
收稿日期:2022-07-11
接受日期:2022-08-03
出版日期:2022-10-15
发布日期:2022-10-25
通讯作者:
盛奎川
作者简介:魏俞涌 E-mail: weiyuyong66@sina.com;
基金资助:
Yuyong WEI1(
), Qingfa ZHANG2, Kuichuan SHENG2(
)
Received:2022-07-11
Accepted:2022-08-03
Online:2022-10-15
Published:2022-10-25
Contact:
Kuichuan SHENG
摘要:
为实现玉米醇溶蛋白(Zein)的材料化利用,以生物炭、聚丙烯(polypropylene,PP)、Zein为原料制备复合材料(Zein/PP),探究生物炭对Zein/PP复合材料力学性能的影响。结果表明,生物炭与Zein均没有改变PP的晶面结构,生物炭降低了Zein/PP复合材料的相对结晶度;生物炭的多孔结构与PP形成了一种稳定的界面结构,进而改善了Zein/PP复合材料的弯曲性能、拉伸性能、冲击强度、刚性、弹性、尺寸稳定性。当生物炭的含量为15%时,复合材料的综合力学性能最佳,其弯曲强度、弯曲模量、拉伸强度、拉伸模量、断裂伸长率、冲击强度分别为44.68 MPa、2.66 GPa、24.27 MPa、0.29 GPa、7.07%、6.10 kJ·m-2。试验结果可为Zein/PP复合材料性能的改善提供依据。
中图分类号:
魏俞涌, 张庆法, 盛奎川. 生物炭对玉米醇溶蛋白/聚丙烯复合材料力学性能的影响[J]. 中国农业科技导报, 2022, 24(10): 161-168.
Yuyong WEI, Qingfa ZHANG, Kuichuan SHENG. Effect of Biochar on Mechanical Properties of Zein/Polypropylene Composites[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 161-168.
| 样品 Sample | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|
| 聚丙烯 PP | 60 | 60 | 60 | 60 | 60 |
| 玉米醇溶蛋白 Zein | 20 | 15 | 10 | 5 | 0 |
| 碳酸钙 CaCO3 | 20 | 20 | 20 | 20 | 20 |
| 生物炭 Biochar | 0 | 5 | 10 | 15 | 20 |
表1 复合材料的质量比 (%)
Table 1 Raw material mass ratio of composites
| 样品 Sample | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|
| 聚丙烯 PP | 60 | 60 | 60 | 60 | 60 |
| 玉米醇溶蛋白 Zein | 20 | 15 | 10 | 5 | 0 |
| 碳酸钙 CaCO3 | 20 | 20 | 20 | 20 | 20 |
| 生物炭 Biochar | 0 | 5 | 10 | 15 | 20 |
| 力学性能 Mechanical property | PP | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|---|
| 弯曲强度 Flexural strength/MPa | 36.01±0.84 | 40.69±1.18 | 41.81±0.43 | 41.45±0.46 | 44.68±0.32 | 45.03±0.18 |
| 弯曲模量 Flexural modulus/GPa | 1.33±0.07 | 2.70±0.11 | 2.28±0.15 | 2.36±0.10 | 2.66±0.06 | 2.54±0.05 |
| 拉伸强度 Tensile strength/MPa | 23.19±1.79 | 20.71±0.55 | 22.41±0.17 | 24.00±0.25 | 24.27±0.05 | 23.64±0.23 |
| 拉伸模量 Tensile modulus/GPa | 0.23±0.01 | 0.33±0.02 | 0.27±0.03 | 0.37±0.01 | 0.29±0.02 | 0.36±0.10 |
| 断裂伸长率 Elongation/% | 8.71±0.17 | 5.97±0.18 | 6.71±0.22 | 7.00±0.41 | 7.07±0.13 | 7.26±0.22 |
| 冲击强度 Impact strength/(kJ·m-2) | 8.57±2.26 | 4.70±0.37 | 6.59±0.56 | 6.11±0.85 | 6.10±0.53 | 4.59±0.87 |
表2 复合材料的弯曲性能、拉伸性能、冲击强度
Table 2 Flexural properties, tensile properties and impact strength of the composites
| 力学性能 Mechanical property | PP | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|---|
| 弯曲强度 Flexural strength/MPa | 36.01±0.84 | 40.69±1.18 | 41.81±0.43 | 41.45±0.46 | 44.68±0.32 | 45.03±0.18 |
| 弯曲模量 Flexural modulus/GPa | 1.33±0.07 | 2.70±0.11 | 2.28±0.15 | 2.36±0.10 | 2.66±0.06 | 2.54±0.05 |
| 拉伸强度 Tensile strength/MPa | 23.19±1.79 | 20.71±0.55 | 22.41±0.17 | 24.00±0.25 | 24.27±0.05 | 23.64±0.23 |
| 拉伸模量 Tensile modulus/GPa | 0.23±0.01 | 0.33±0.02 | 0.27±0.03 | 0.37±0.01 | 0.29±0.02 | 0.36±0.10 |
| 断裂伸长率 Elongation/% | 8.71±0.17 | 5.97±0.18 | 6.71±0.22 | 7.00±0.41 | 7.07±0.13 | 7.26±0.22 |
| 冲击强度 Impact strength/(kJ·m-2) | 8.57±2.26 | 4.70±0.37 | 6.59±0.56 | 6.11±0.85 | 6.10±0.53 | 4.59±0.87 |
| 1 | 李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5): 1074-1082. |
| LI J W, ZHANG B M, SUN Y L, et al.. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates [J]. Acta Mater. Compos. Sin., 2019, 36(5): 1074-1082. | |
| 2 | 迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32 (1): 76-84. |
| CHI X H, YU L, ZHENG J, et al.. Crystallization morphology and electrical tree resistance characteristics of montmorillonite/polypropylene composites [J]. Acta. Mater. Compos. Sin., 2015,32 (1): 76-84. | |
| 3 | KAYA G G, YILMAZ E, DEVECI H. Sustainable bean pod/calcined kaolin reinforced epoxy hybrid composites with enhanced mechanical, water sorption and corrosion resistance properties [J]. Constr. Build. Mater., 2018, 162: 272-279. |
| 4 | GOORANORIMI O, SUARIS W, DAUER E, et al.. Microstructural investigation of glass fiber reinforced polymer bars [J]. Compos. Part-B Eng., 2017, 110: 388-395. |
| 5 | ELGABBAS F, VINCENT P, AHMED E A, et al.. Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams [J]. Compos. Part-B Eng., 2016, 91: 205-218. |
| 6 | ENAYATI M S, BEHZAD T, SAJKIEWICZ P Ł, et al.. Theoretical and experimental study of the stiffness of electrospun composites of poly (vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite [J]. Cellulose, 2018, 25(1): 65-75. |
| 7 | TREINYTE J, BRIDZIUVIENE D, FATARAITE-URBONIENE E, et al.. Forestry wastes filled polymer composites for agricultural use [J]. J. Clean. Prod., 2018, 205: 388-406. |
| 8 | SEPE R, BOLLINO F, BOCCARUSSO L, et al.. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites [J]. Compos. Part-B Eng., 2018, 133: 210-217. |
| 9 | BARCZWSKI M, MATYKIEWICZ D, PIASEKI A, et al.. Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties [J]. Compos. Interface., 2018, 25(4): 287-299. |
| 10 | JIANG Y, WANG D, LI F, et al.. Cinnamon essential oil pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application [J]. Int. J. Boil. Macromol., 2020, 148: 1280-1289. |
| 11 | 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11): 3044-3050. |
| ZHANG Q F, YANG K Y, CAI H Z, et al.. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites [J]. Acta Mater. Compos. Sin., 2018, 35(11): 3044-3050. | |
| 12 | 王海莹, 余晓, 李穗奕, 等. 热塑性塑料/生物炭复合材料研究进展[J]. 工程塑料应用, 2018, 46(12): 139-142. |
| WANG H Y, YU X, LI S Y, et al.. Research progress of thermoplastic/biomass charcoal composites [J]. Eng. Plast. Appl., 2018, 46(12):139-142. | |
| 13 | 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2): 83-89. |
| CHEN W F, ZHANG W M, MENG J, et al.. Researches on biochar application technology [J]. Eng. Sci., 2011, 13(2): 83-89. | |
| 14 | ZHAO B, O’CONNOR D, ZHANG J, et al.. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar [J]. J. Clean. Prod., 2018, 174: 977-987. |
| 15 | DAS O, BHATTACHRYYA D, HUI D, et al.. Mechanical and flammability characterisations of biochar/polypropylene biocomposites [J]. Compos. Part-B Eng., 2016, 106: 120-128. |
| 16 | 张庆法, 徐航, 任夏瑾, 等. 农林废物生物炭/高密度聚乙烯复合材料的制备与性能[J]. 复合材料学报, 2021, 38(2): 1-8. |
| ZHANG Q F, XU H, REN X J, et al.. Preparation and properties of agroforestry wastes biochar/high density polyethylene composites [J]. Acta. Mater. Compos. Sin., 2021, 38(2): 1-8. | |
| 17 | POULOSE A M, ELNOUR A Y, ANIS A, et al.. Date palm biochar-polymer composites: an investigation of electrical, mechanical, thermal and rheological characteristics [J]. Sci. Total Environ., 2018, 619: 311-318. |
| 18 | ZHANG Q, ZHANG D, XU H, et al.. Biochar filled high-density polyethylene composites with excellent properties: towards maximizing the utilization of agricultural wastes [J/OL]. Ind. Crop. Prod., 2020, 146: 112185 [2022-06-10]. . |
| 19 | BAZJWA D S, ADHIKARI S, SHOJAEIARANI J, et al.. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer [J]. Constr. Build. Mater., 2019, 204: 193-202. |
| 20 | 杨荔, 刘洪波, 张东升, 等. 竹炭/酚醛树脂复合导电材料的制备与性能[J]. 复合材料学报, 2011, 28(2): 70-76. |
| YANG L, LIU H B, ZHANG D S, et al.. Preparation and properties of bamboo charcoal/phenolic resin conductive composite [J]. Acta. Mater. Compos. Sin., 2011, 28(2): 70-76. | |
| 21 | OGUNSONA E O, MISRA M, MOHANTY A K. Accelerated hydrothermal aging of biocarbon reinforced nylon biocomposites [J]. Polym. Degrad. Stabil., 2017, 139: 76-88. |
| 22 | GIORCELLI M, KHAN A, PUGNO N M, et al.. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties [J]. Biomass. Bioenergy, 2019, 120: 219-223. |
| 23 | LIN Y, LIU Y, ZHANG D, et al.. Radiation resistance of polypropylene composites by incorporating reduced graphene oxide and antioxidant: a comparison study [J]. Compos. Sci. Technol., 2017, 146: 83-90. |
| 24 | ZHANG C, FU Z, LIU Y C, et al.. Ionic liquid-functionalized biochar sulfonic acid as a biomimetic catalyst for hydrolysis of cellulose and bamboo under microwave irradiation [J]. Green. Chem., 2012, 14(7): 1928-1934. |
| 25 | WANG K, WU K, XIAO M, et al.. Structural characterization and properties of konjac glucomannan and zein blend films [J]. Int. J. Boil. Macromol., 2017, 105: 1096-1104. |
| 26 | RAO J, BAO L, WANG B, et al.. Plasma surface modification and bonding enhancement for bamboo composites[J]. Compos. Part B-Eng., 2018, 138: 157-167. |
| 27 | 张庆法, 张东红, 雷寒武, 等. 不同炭化温度的稻壳炭对稻壳炭/高密度聚乙烯复合材料的影响[J]. 高分子材料科学与工程, 2020, 36(7): 67-72. |
| ZHANG Q F, ZHANG D H, LEI H W, et al.. Effect of rice husk biochar obtained at different carbonized temperatures on rice husk biochar/high density polyethylene composites [J]. Polym. Mater. Sci. Eng., 2020, 36(7): 67-72. | |
| 28 | DAS O, KIM N K, KALAMKAROV A L, et al.. Biochar to the rescue: balancing the fire performance and mechanical properties of polypropylene composites [J]. Polym. Degrade. Stabil., 2017, 144: 485-496. |
| 29 | 张庆法, 任夏瑾, 吴娟娟, 等. 活性炭/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2020, 37(11): 2816-2824. |
| ZHANG Q F, REN X J, WU J J, et al.. Mechanical properties of activated carbon/high density polyethylene composites [J]. Acta Mater. Compos. Sin., 2020, 37(11): 2816-2824. | |
| 30 | GEZAHEGN S, LAI R, HUANG L, et al.. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites [J]. Sci. Total Environ., 2019, 664: 363-373. |
| 31 | HO M P, LAU K T. Enhancement of impact resistance of biodegradable polymer using bamboo charcoal particles [J]. Mater. Lett., 2014, 136: 122-125. |
| 32 | HILMI A R, FAUZIYAH N A, PRATAPA S. A temperature-dependent storage modulus model for filler-dispersed PEG/silica composites [J/OL]. Compos. Part-B Eng., 2019, 173: 106868 [2022-06-10]. . |
| 33 | LI S, WANG H, CHEN C, et al.. Size effect of charcoal particles on the properties of bamboo charcoal/ultra‐high molecular weight polyethylene composites [J/OL]. J. Appl. Polym. Sci., 2017, 134(47): 45530 [2022-06-10]. . |
| 34 | YOU Z, LI D. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites [J]. Mater. Lett., 2013, 112: 197-199. |
| 35 | DAVIS A M, HANZLY L E, DEBUTTS B L, et al. Characterization of dimensional stability in flax fiber reinforced polypropylene composites [J]. Polym. Compos., 2019, 40(1): 132-140. |
| 36 | OBAID N, KORTSCHOT M T, SAIN M. Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites [J]. Compos. Sci. Technol., 2018, 161: 85-91. |
| 37 | IKRAM S, DAS O, BHATTACHARYYA D. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites [J]. Compos. Part A-Appl. Sci., 2016, 91: 177-188. |
| 38 | LI S, LI X, CHEN C, et al.. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network [J]. Compos. Sci. Technol., 2016, 132: 31-37. |
| 39 | BARTOLI M, ROSSO C, GIORCELLI M, et al.. Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites [J/OL]. J. Appl. Polym. Sci., 2020, 137(27): 48896 [2022-06-10]. . |
| [1] | 庆福, 梁洪月, 孙静, 鲁新蕊, 梁运江. 生物炭-氮肥配施对东北黑土团聚体及有机碳含量的影响[J]. 中国农业科技导报, 2025, 27(6): 195-204. |
| [2] | 侯赛赛, 仝姗姗, 王鹏企, 谢冰雪, 张瑞芳, 王鑫鑫. 生物炭和秸秆对不同作物生长性状和养分吸收的影响[J]. 中国农业科技导报, 2025, 27(4): 179-191. |
| [3] | 张如艳, 李绅昊, 朱奇鹏, 冯太纲, 李红波, 邢泽炳, 羡瑜. 生物炭含量对园林绿化废弃物/聚乳酸复合材料物理力学性能影响[J]. 中国农业科技导报, 2025, 27(2): 192-200. |
| [4] | 吕志伟, 李冬梅, 金梅娟, 张燕辉, 陶玥玥, 周新伟, 王海候. 热解温度及时间对生物炭理化性质及吸附性能的影响[J]. 中国农业科技导报, 2025, 27(2): 211-217. |
| [5] | 史丹一, 邱禹, 黄成真, 王娟. 酸改性生物炭对滨海盐渍土壤水分入渗特性的影响[J]. 中国农业科技导报, 2024, 26(9): 183-192. |
| [6] | 蒲子天, 王红, 赵斌, 王鑫鑫. 不同土壤改良物料对连作黄芩生长及土壤酶活性的影响[J]. 中国农业科技导报, 2024, 26(7): 189-198. |
| [7] | 付彦博, 冷冰冰, 扁青永, 董志多, 刘国宏, 李海峰, 温云梦, 郭文博, 张万旭. 生物炭和油菜幼苗对土壤重金属镉污染的钝化效应[J]. 中国农业科技导报, 2024, 26(6): 183-190. |
| [8] | 赵晖, 金辰华, 宣卫红, 徐海生. 亚麻纤维水泥基复合材料研究现状及发展展望[J]. 中国农业科技导报, 2024, 26(4): 153-163. |
| [9] | 赵娅红, 胡骞予, 夏融, 王志江, 谢永辉, 叶贤文, 余磊, 齐颖, 羊绍武, 薛至勤, 吴治兴, 黄飞燕, 韩天华. 生物炭肥对易感根结线虫病烤烟根际菌群和理化性质的影响[J]. 中国农业科技导报, 2024, 26(4): 206-214. |
| [10] | 高静, 徐明岗, 李然, 蔡泽江, 孙楠, 张强, 郑磊. 整合分析生物炭施用对土壤pH的影响[J]. 中国农业科技导报, 2023, 25(9): 186-196. |
| [11] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
| [12] | 王旭东, 任雪冰, 汤舒, 郭琴, 薛梦瑶, 金鹏, 张云华. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173. |
| [13] | 刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197. |
| [14] | 杨玲, 张富仓, 孙鑫, 张少辉, 王海东, ABDELGHANY Ahmed Elsayed, 陈占飞, 方玉川. 生物炭和滴灌量对陕北榆林沙土性质和马铃薯生长的影响[J]. 中国农业科技导报, 2023, 25(3): 221-233. |
| [15] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||