








中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (11): 151-163.DOI: 10.13304/j.nykjdb.2024.0654
• 动植物健康 • 上一篇
李一林(
), 郝梦宇, 温运飞, 王会, 汪文祥, 何平, 梅德圣, 胡琼, 成洪涛(
)
收稿日期:2024-08-10
接受日期:2025-02-26
出版日期:2025-11-15
发布日期:2025-11-17
通讯作者:
成洪涛
作者简介:李一林 E-mail: acer1230228@163.com;
基金资助:
Yilin LI(
), Mengyu HAO, Yunfei WEN, Hui WANG, Wenxiang WANG, Ping HE, Desheng MEI, Qiong HU, Hongtao CHENG(
)
Received:2024-08-10
Accepted:2025-02-26
Online:2025-11-15
Published:2025-11-17
Contact:
Hongtao CHENG
摘要:
农田杂草是制约作物生产的重要因素之一,严重影响农作物的产量和品质。提升草害的防治水平对于稳定和发展作物生产具有重要意义。化学除草是目前农业生产中主要使用的控制手段,但除草剂施用不当会对农作物产生药害。培育和应用抗除草剂作物是防治杂草最经济有效的手段。综述了目前作物中施用的主要除草剂类型以及作用机理,概述了作物除草剂抗性研究进展,对目前全球抗性杂草产生主要类型和突变位点进行了分析。作物除草剂抗性研究应发掘更多除草剂潜在作用靶标位点,利用新兴的基因编辑等技术创制抗除草剂新种质,加快抗除草剂新品种的培育。
中图分类号:
李一林, 郝梦宇, 温运飞, 王会, 汪文祥, 何平, 梅德圣, 胡琼, 成洪涛. 作物除草剂抗性研究及应用进展[J]. 中国农业科技导报, 2025, 27(11): 151-163.
Yilin LI, Mengyu HAO, Yunfei WEN, Hui WANG, Wenxiang WANG, Ping HE, Desheng MEI, Qiong HU, Hongtao CHENG. Progress of Crop Herbicide Resistance Research and Application[J]. Journal of Agricultural Science and Technology, 2025, 27(11): 151-163.
类型 Type | 机理 Mechanism | 作用位点 Target site | 作用方式 Mode of action | 除草剂种类 Type of herbicide |
|---|---|---|---|---|
乙酰乳酸合成 酶抑制剂 Acetolactate synthase inhibitors | 抑制植物支链氨基酸合成 Inhibit the synthesis of branched-chain amino acids in plants | 乙酰乳酸合成酶 Acetolactate synthase | 内吸 Systemic | 磺酰脲类、噻唑烷酮类和咪唑类 Sulfonylureas, thiadiazolinones, imidazolinones |
| 原卟啉原氧化酶抑制剂Protoporphyrinogen oxidase inhibitors | 抑制光合色素形成 Inhibit the formation of photosynthetic pigments | 原卟啉原氧化酶 Protoporphyrinogen oxidase | 触杀 Contact | 二苯醚类、三唑啉酮类、三嗪酮类、噻二唑类、恶唑烷酮类 Diphenylethers, triazolinones, triazinones, thiadiazoles, oxadiazolinones |
光系统Ⅱ抑制剂 Photosystem Ⅱ inhibitors | 抑制光合系统 Disrupt photosynthetic system | D1蛋白 D1 protein | 内吸 Systemic | 三嗪类、三嗪酮类、尿嘧啶类 Triazines, triazinones, uracils, |
EPSP合成酶抑制剂 EPSP synthase inhibitors | 抑制芳香族氨基酸合成 Inhibit the synthesis of aromatic amino acids | 5-烯醇式-3-磷酸合成酶 5-enolpyruvylshikimate-3-phosphate synthase | 内吸 Systemic | 草甘膦 Glyphosate |
谷氨酰胺合成酶抑制剂 Glutamine synthetase inhibitors | 抑制植物的光呼吸 Inhibit photorespiration in plants | 谷氨酰胺合成酶 Glutamine synthetase | 触杀 Contact | 草铵膦 Glufosinate |
乙酰辅酶A羧化酶抑制剂 Acetyl-CoA carboxylase inhibitors | 抑制植物脂肪酸合成 Inhibit fatty acid synthesis in plants | 乙酰辅酶A羧化酶 Acetyl-CoA carboxylase | 选择性内吸 Selective systemic | 芳氧苯氧丙酸类、环己烯二类 Aryloxyphenoxypropionates, cyclohexanediones |
表1 主要除草剂类型及其作用位点
Table 1 Major types of herbicide and their target sites
类型 Type | 机理 Mechanism | 作用位点 Target site | 作用方式 Mode of action | 除草剂种类 Type of herbicide |
|---|---|---|---|---|
乙酰乳酸合成 酶抑制剂 Acetolactate synthase inhibitors | 抑制植物支链氨基酸合成 Inhibit the synthesis of branched-chain amino acids in plants | 乙酰乳酸合成酶 Acetolactate synthase | 内吸 Systemic | 磺酰脲类、噻唑烷酮类和咪唑类 Sulfonylureas, thiadiazolinones, imidazolinones |
| 原卟啉原氧化酶抑制剂Protoporphyrinogen oxidase inhibitors | 抑制光合色素形成 Inhibit the formation of photosynthetic pigments | 原卟啉原氧化酶 Protoporphyrinogen oxidase | 触杀 Contact | 二苯醚类、三唑啉酮类、三嗪酮类、噻二唑类、恶唑烷酮类 Diphenylethers, triazolinones, triazinones, thiadiazoles, oxadiazolinones |
光系统Ⅱ抑制剂 Photosystem Ⅱ inhibitors | 抑制光合系统 Disrupt photosynthetic system | D1蛋白 D1 protein | 内吸 Systemic | 三嗪类、三嗪酮类、尿嘧啶类 Triazines, triazinones, uracils, |
EPSP合成酶抑制剂 EPSP synthase inhibitors | 抑制芳香族氨基酸合成 Inhibit the synthesis of aromatic amino acids | 5-烯醇式-3-磷酸合成酶 5-enolpyruvylshikimate-3-phosphate synthase | 内吸 Systemic | 草甘膦 Glyphosate |
谷氨酰胺合成酶抑制剂 Glutamine synthetase inhibitors | 抑制植物的光呼吸 Inhibit photorespiration in plants | 谷氨酰胺合成酶 Glutamine synthetase | 触杀 Contact | 草铵膦 Glufosinate |
乙酰辅酶A羧化酶抑制剂 Acetyl-CoA carboxylase inhibitors | 抑制植物脂肪酸合成 Inhibit fatty acid synthesis in plants | 乙酰辅酶A羧化酶 Acetyl-CoA carboxylase | 选择性内吸 Selective systemic | 芳氧苯氧丙酸类、环己烯二类 Aryloxyphenoxypropionates, cyclohexanediones |
图4 5-烯醇式-3-磷酸合成酶抑制剂类除草剂作用机理注:PEP—磷酸烯醇丙酮酸;E4P—4-磷酸赤藓糖;DAHP—3-脱氧-阿拉伯庚酮糖酸-7-磷酸;DHQ—3-脱氢圭尼酸;DHS—3-脱氢莽草酸;SA—莽草酸;S3P—莽草酸-3-磷酸;EPSPS—5-烯醇式-3-磷酸合成酶。
Fig. 4 Mode of action diagram of 5-enolpyruvylshikimate-3-phosphate synthase inhibitor herbicidesNote: PEP—Phosphoenolpyruvat; E4P—Erythrose-4-phosphate; DAHP—3-deoxy-d-arabino-heptulo-sonate-7-phosephate; DHQ—3-dehydroquinic acid; DHS—3-dehydroshikimic acid; SA—Shikimic acid; S3P—Shikimate-3-phosphate; EPSPS—5-enolpyruvylshikimate-3-phosphate synthase.
图6 乙酰辅酶A羧化酶抑制剂类除草剂作用机理注:CIC—柠檬酸转运蛋白;ACLY—ATP-柠檬酸裂解酶;ACSS2—乙酰辅酶A合成酶2;ACC—乙酰辅酶A羧化酶;FASN—脂肪酸合成酶;HMGCS—3-羟甲基戊二酰辅酶A合成酶;HMGCR—3-羟基-3甲基戊二酰辅酶A还原酶。
Fig. 6 Mode of action diagram of acetyl-CoA carboxylase inhibitor herbicidesNote: CIC—Citrate carrier; ACLY—ATP-citrate lyase; ACSS2—Acetyl-CoA synthetase 2; ACC—Acetyl-CoA carboxylase; FASN—Fatty acid synthase; HMGCS—3-hydroxy-3-methylglutaryl-CoA synthetase; HMGCR—3-hydroxy-3-methylglutaryl-CoA reductase.
| [1] | 王玲玲. 化肥和农药施用量对我国粮食产量影响的研究[D]. 大连: 大连海洋大学, 2024. |
| WANG L L. A study on the impact of chemical fertiliser and pesticide application on grain yield in China [D]. Dalian: Dalian Ocean University, 2024 | |
| [2] | 于翠. 靶向AHAS的真菌天然除草化合物基因组挖掘[D]. 福州: 福建师范大学, 2023. |
| YU C. Genome mining of fungal natural herbicide targeting AHAS [D]. Fuzhou: Fujian Normal University, 2023. | |
| [3] | 刘忠松, 官春云, 陈社员. 抗除草剂油菜研究及其进展[J]. 作物研究, 2003, 17(2): 70-72. |
| LIU Z S, GUAN C Y, CHEN S Y. Progresses in studies on rape resistant to herbicide [J]. Crop Res., 2003, 17(2): 70-72. | |
| [4] | 张维, 浦惠明, 胡茂龙, 等. 磺酰脲类除草剂对抗性油菜田间杂草的防除效果及安全性评价[J]. 中国油料作物学报, 2023, 45(2): 334-340. |
| ZHANG W, PU H M, HU M L, et al.. Weed control and safety evaluation of sulfonylurea herbicides in resistant rapeseed field [J]. Chin. J. Oil Crop Sci., 2023, 45(2): 334-340. | |
| [5] | 刘爽. 除草剂对甜叶菊安全性及田间杂草防效的研究[D]. 邯郸: 河北工程大学, 2023. |
| LIU S. Study on the safety of herbicide on Steviaand its control effect on weeds in field [D]. Handan: Hebei University of Engineering, 2023. | |
| [6] | 关周博, 董育红, 田建华, 等. 非转基因抗除草剂油菜细胞质雄性不育系的选育及应用[J]. 中国农学通报, 2020, 36(26): 9-13. |
| GUAN Z B, DONG Y H, TIAN J H, et al.. Non-transgenic herbicide-resistant cytoplasmic male sterile lines of Brassica napus L. breeding and application [J]. Chin. Agric. Sci. Bull., 2020, 36(26): 9-13. | |
| [7] | POWLES S B, YU Q. Evolution in action: plants resistant to herbicides [J]. Annu. Rev. Plant Biol., 2010, 61: 317-347. |
| [8] | FIRDOUS S, IQBAL S, ANWAR S. Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology [J]. Pedosphere, 2020, 30(5): 618-627. |
| [9] | GREEN J M. Current state of herbicides in herbicide‐resistant crops [J]. Pest Manage. Sci., 2014, 70(9): 1351-1357. |
| [10] | 柳亚迪. 乙酰羟酸合酶的进化及其在L-缬氨酸合成中关键作用的研究[D]. 无锡: 江南大学, 2019. |
| LIU Y D. Studies on the evolution of acetohydroxyacid synthaseand its key role on the biosynthesis of L-valine [D]. Wuxi: Jiangnan University, 2019. | |
| [11] | LIU Y, LI Y, WANG X. Acetohydroxyacid synthases: evolution, structure, and function [J]. Appl. Microbiol. Biotechnol., 2016, 100(20): 8633-8649. |
| [12] | AKBAR N, EHSANULLA H, JABRAN K, et al.. Weed management improves yield and quality of direct seeded rice [J]. Aust. J. Crop Sci., 2011, 5(6): 688-694. |
| [13] | 张杰, 卢百亨. 非转基因抗除草剂作物的获得方法研究[J]. 乡村科技, 2018(13): 89-91. |
| [14] | 于澄宇, 何蓓如. 植物乙酰乳酸合成酶抑制剂作用方式及机理研究进展[J]. 农药学学报, 2011, 13(3): 221-227. |
| YU C Y, HE B R. Research progress on the mode and mechanism of action of plant acetolactate synthase inhibitors [J]. Chin. J. Pestic. Sci., 2011, 13(3): 221-227. | |
| [15] | DUKE S O, POWLES S B. Glyphosate: a once-in-a-century herbicide [J]. Pest Manage. Sci., 2008, 64(4): 319-325. |
| [16] | HERRMANN K M, WEAVER L M. The shikimate pathway [J]. Annu. Rev. Plant Biol., 1999, 50(1): 473-503. |
| [17] | SALAS R A, BURGOS N R, TRANEL P J, et al.. Resistance to PPO-inhibiting herbicide in palmer amaranth from Arkansas [J]. Pest Manage. Sci., 2016, 72(5): 864-869. |
| [18] | 王志芳. 原卟啉原氧化酶催化机理及其抑制动力学的研究[D]. 武汉: 华中师范大学, 2011. |
| WANG Z F. Studies on mechanism and inhibition kinetics of protoporphyrinogen oxidase [D]. Wuhan: Central China Normal University, 2011. | |
| [19] | HAO G F, ZUO Y, YANG S G, et al.. Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery [J]. Chimia (Aarau), 2011, 65(12): 961-969. |
| [20] | SALAS R A, BURGOS N R, TRANEL P J, et al.. Resistance to PPO-inhibiting herbicide in palmer amaranth from Arkansas [J]. Pest Manage. Sci., 2016, 72(5): 864-869. |
| [21] | 刘玉晓, 许晓明. PS Ⅱ抑制剂作用位点的研究进展和方法[J]. 农药, 2007, 46(3): 154-158, 165. |
| LIU Y X, XU X M. Advances and methods in study of action site of PS Ⅱ inhibitors [J]. Agrochemicals, 2007, 46(3): 154-158, 165. | |
| [22] | 唐婷, 陈东雨, 张子叶, 等. 除草剂分子靶标研究进展[J]. 农药学学报, 2023, 25(4): 755-768. |
| TANG T, CHEN D Y, ZHANG Z Y, et al.. Research progress on the molecular targets of herbicides [J]. Chin. J. Pestic. Sci., 2023, 25(4): 755-768. | |
| [23] | 马红, 王月超, 孙莹, 等. 杂草对9类常用不同作用机制除草剂的非靶标抗性机制研究进展[J]. 植物保护, 2024, 50(1): 15-23. |
| MA H, WANG Y C, SUN Y, et al.. Advances in non-target resistance mechanisms of weeds to nine kinds of commonly used herbicides with different mechanisms of action [J]. Plant Prot., 2024, 50(1): 15-23. | |
| [24] | HOFFMAN L, HARDEJ D. Environmental toxicology and pharmacology [J]. Environ. Toxicol. Pharmacol., 2008, 27(2): 293-297. |
| [25] | BENBROOK C M. Trends in glyphosate herbicide use in the United States and globally [J]. Environ. Sci. Eur., 2016, 28(1): 3. |
| [26] | IMRAN M, ASAD S, BARBOZA A L, et al.. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide [J]. Physiol. Mol. Biol. Plants, 2017, 23(2): 453-460. |
| [27] | 于金萍. 草铵膦胁迫对小麦基因表达的影响及抗性相关基因初步筛选[D]. 天津: 天津农学院, 2023. |
| YU J P. Effect of glufosinate-ammonium stress on gene expression in wheat and preliminary screeningof resistance related genes [D]. Tianjin: Tianjin Agricultural University, 2023. | |
| [28] | JAMES D, BORPHUKAN B, FARTYAL D, et al.. Concurrent overexpression of OsGS 1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses [J/OL]. Front. Plant Sci., 2018, 9: 786 [2024-07-10]. . |
| [29] | 崔莹. 新型转基因抗除草剂水稻培育[D]. 武汉: 华中农业大学, 2017. |
| CUI Y. Developing novel transgenic herbicide-tolerant rice [D]. Wuhan: Huazhong Agricultural University, 2017. | |
| [30] | PARO R, TIBONI G M, BUECIONE R, et a1 .. Toxicology and applied pharmacology [J/OL]. 2012, 260: 155 [2024-07-10]. . |
| [31] | OVEJERO R F L, TAKANO H K, NICOLAI M, et al.. Frequency and dispersal of glyphosate-resistant sourgrass (Digitaria insularis) populations across Brazilian agricultural production areas [J]. Weed Sci., 2017, 65(2): 285-294. |
| [32] | AVILA-GARCIA W V, SANCHEZ-OLGUIN E, HULTING A G, et al.. Target-site mutation associated with glufosinate resistance in Italian ryegrass (Lolium perenne L. ssp. Multiflorum) [J]. Pest Manage. Sci., 2012, 68(9): 1248-1254. |
| [33] | CHEN G, WANG L, XU H, et al.. Cross-resistance patterns to acetyl-CoA carboxylase inhibitors associated with different mutations in Japanese foxtail (Alopecurus japonicus) [J]. Weed Sci., 2017, 65(4): 444-451. |
| [34] | HEAP I. The international survey of herbicide resistant weeds [J]. Weed Technol., 2006, 4(1): 220-228.. |
| [35] | 尹春慧. 新型原卟啉原氧化酶抑制剂的设计、合成与活性测试[D]. 深圳: 深圳大学, 2020. |
| YIN C H. Design, synthesis, and activity testing of novel protoporphyrinogen oxidase inhibitors [D]. Shenzhen: Shenzhen University, 2020. | |
| [36] | PATZOLDT W L, HAGER A G, MCCORMICK J S, et al.. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase [J]. Proc. Natl. Acad. Sci. USA, 2006, 103(33): 12329-12334. |
| [37] | YUAN J S, TRANEL P J, STEWART C N J. Non-target-site herbicide resistance: a family business [J]. Trends Plant Sci., 2007, 12(1): 6-13. |
| [38] | 马晓渊. 农田杂草抗药性的发生为害、原因与治理[J]. 杂草科学, 2002, 20(1): 5-9. |
| MA X Y. The occurrence and harm of weeds’ resistance to herbicides and its control strategy [J]. J. Weed Sci., 2002, 20(1): 5-9. | |
| [39] | HOLT J S, WELLES S R, SILVERA K, et al.. Taxonomic and life history bias in herbicide resistant weeds: implications for deployment of resistant crops [J/OL]. PLoS One, 2017, 8(9): e71916 [2024-07-10]. . |
| [40] | DÉLYE C, JASIENIUK M, LE CORRE V. Deciphering the evolution of herbicide resistance in weeds [J]. Trends Genet., 2013, 29(11): 649-658. |
| [41] | TIAN X, DARMENCY H. Rapid bidirectional allele‐specific PCR identification for triazine resistance in higher plants [J]. Pest Manage. Sci., 62(6):531-536. |
| [42] | 隋标峰. 节节麦(Aegilops tauschii Coss.)不同种群对甲基二磺隆的敏感性差异研究[D]. 北京: 中国农业科学院, 2010. |
| SUI B F. Basis of variable sensitivity to mesosulfuron-methyl in different tausch’s goatgrass (Aegilops tauschii Coss.) population [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. | |
| [43] | 张乐乐. 麦田杂草荠菜(Capsella bursa pastoris)对苯磺隆抗性分子机制的研究[D]. 泰安: 山东农业大学, 2018. |
| ZHANG L L. Molecular mechanism of resistance to tribenuron-methyl in shepherd’s purse (Capsella bursapastoris) form wheat fields [D]. Tai’an: Shandong Agricultural University, 2018. | |
| [44] | PLAISANCE K L, GRONWALD J W. Enhanced catalytic constant for glutathioneS-transferase (atrazine) activity in an atrazine-resistantabutilon theophrastibiotype [J]. Pestic. Biochem. Physiol., 1999, 63(1): 34-49. |
| [45] | GERA A, LOEBENSTEIN G, SHABTAI S. Enhanced tobacco mosaic virus production and suppressed synthesis of a virus inhibitor in protoplasts exposed to antibiotics [J]. Virology, 1983, 127(2): 475-478. |
| [46] | HARRISON L A, BAILEY M R, NAYLOR M W, et al.. The expressed protein in glyphosate-tolerant soybean, 5-enolypyruvylshikimate-3-phosphate synthase from Agrobacterium sp. strain CP4, is rapidly digested in vitro and is not toxic to acutely gavaged mice [J]. J. Nutr., 1996, 126(3): 728-740. |
| [47] | 李杰华, 端群, 史明涛, 等. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 778-787. |
| LI J H, DUAN Q, SHI M T, et al.. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agron. Sin., 2021, 47(5): 778-787. | |
| [48] | PAN L, YU Q, WANG J, et al.. An ABCC-type transporter endowing glyphosate resistance in plants [J/OL]. Proc. Natl. Acad. Sci. USA, 2021, 118(16): e2100136118 [2024-07-10]. . |
| [49] | 吴潞梅, 覃萍, 闫彤, 等. 抗草铵膦除草剂转基因油菜新种质的创制及鉴定[J]. 植物遗传资源学报, 2022, 23(6): 1696-1708. |
| WU L M, QIN P, YAN T, et al.. Development and identification of transgenic rapeseed resistant to herbicide glufosinate [J]. J. Plant Genet. Resour., 2022, 23(6): 1696-1708. | |
| [50] | ANDERSON D D, NISSEN S J, MARTIN A R, et al.. Mechanism of primisulfuron resistance in a shattercane (Sorghum bicolor) biotype [J]. Weed Sci., 1998, 46(2): 158-162. |
| [51] | 黄大年. 农作物抗除草剂遗传工程研究进展[J]. 生物工程进展, 1997(5): 14-17. |
| HUANG D N. Progress on genetically engineering herbicide resistance into crops [J]. Prog. Biotechnol., 1997(5): 14-17. | |
| [52] | 刘伟, 王金信, 杨广玲, 等. 烟草愈伤组织对苯磺隆的抗性诱导及抗性植株筛选[J]. 中国农业科学, 2007, 40(7): 1410-1415. |
| LIU W, WANG J X, YANG G L, et al.. Inducement of tribenuron-methyl resistant callus and regeneration of plantlet in tobacco [J]. Sci. Agric. Sin., 2007, 40(7): 1410-1415. | |
| [53] | 宋宜穹. 野黍对ALS抑制剂类除草剂抗药性研究[D]. 沈阳: 沈阳农业大学, 2022. |
| SONG Y Q. Study on the resistance of Eriochloa villosa to ALS inhibitor herbicides [D]. Shenyang: Shenyang Agricultural University, 2022. | |
| [54] | 徐明, 路铁刚. 植物诱变技术的研究进展[J]. 生物技术进展, 2011, 1(2): 90-97. |
| XU M, LU T G. Research progress of plant mutagenesis technology [J]. Curr. Biotechnol., 2011, 1(2): 90-97. | |
| [55] | 吴丹丹, 许敏敏, 刘兆明, 等. 抗ACCase抑制剂类除草剂水稻种质的创制与鉴定[J]. 中国种业, 2024(2): 72-76. |
| WU D D, XU M M, LIU Z M, et al.. Creation and identification of rice germplasm resistant to ACCase inhibitor herbicides [J]. China Seed Ind., 2024(2): 72-76. | |
| [56] | 江群, 凌溪铁, 唐兆成, 等. EMS诱变创制水稻抗乙酰辅酶A羧化酶抑制剂类除草剂种质[J]. 江苏农业学报, 2023, 39(2): 305-312. |
| JIANG Q, LING X T, TANG Z C, et al.. EMS mutagenesis to create rice anti-acetyl-CoA carboxylase inhibitor-her-bicide germplasm [J]. Jiangsu J. Agric. Sci., 2023, 39(2): 305-312. | |
| [57] | 曲高平, 孙妍妍, 庞红喜, 等. 甘蓝型油菜EMS突变体库构建及抗除草剂突变体筛选[J]. 中国油料作物学报, 2014, 36(1): 25-31. |
| QU G P, SUN Y Y, PANG H X, et al.. EMS mutagenesis and ALS-inhibitor herbicide-resistant mutants of Brassica napus L [J]. Chin. J. Oil Crop Sci., 2014, 36(1): 25-31. | |
| [58] | LI H, LI J, ZHAO B, et al.. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility [J]. Theor. Appl. Genet., 2015, 128(1): 107-118. |
| [59] | 浦惠明, 胡茂龙, 龙卫华, 等. 一种高抗磺酰脲类除草剂油菜的选育方法: CN110679480A[P]. 2020-01-14. |
| [60] | 胡茂龙, 浦惠明, 龙卫华, 等. 具有除草剂抗性的乙酰乳酸合酶突变蛋白及其应用: CN111690625A[P]. 2020-09-22. |
| [61] | LYU Y S, CAO L M, HUANG W Q, et al.. Disruption of three polyamine uptake transporter genes in rice by CRISPR/Cas9 gene editing confers tolerance to herbicide paraquat [J]. Abiotech., 2022, 3(2): 140-145. |
| [62] | LI S, LI J, HE Y, et al.. Precise gene replacement in rice by RNA transcript-templated homologous recombination [J]. Nat. Biotechnol., 2019, 37(4): 445-450. |
| [63] | 陈易雨, 王志平, 倪汉文, 等. CRISPR/Cas9单碱基编辑技术创制抗除草剂拟南芥种质[J]. 中国科学(生命科学), 2017, 47(11): 1196-1199. |
| CHEN Y Y, WANG Z P, NI H W, et al.. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis [J]. Sci. Sin. Vitae, 2017, 47(11): 1196-1199. | |
| [64] | GAUDELLI N M, KOMOR A C, REES H A, et al.. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage [J]. Nature, 2017, 551(7681): 464-471. |
| [65] | LIU L, KUANG Y, YAN F, et al.. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2 [J]. Plant Biotechnol. J., 2021, 19(1): 5-7. |
| [66] | ZONG Y, LIU Y, XUE C, et al.. An engineered prime editor with enhanced editing efficiency in plants [J]. Nat. Biotechnol., 2022, 40(9): 1394-1402. |
| [67] | CHENG H, HAO M, DING B, et al.. Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system [J]. Plant Biotechnol. J., 2021, 19(1): 87-97. |
| [68] | HU L, ZHAI Y, XU L, et al.. Precise A∙T to G∙C base editing in the allotetraploid rapeseed (Brassica napus L.) genome [J]. J. Cell. Physiol., 2022, 237(12): 4544-4550. |
| [69] | GUPTA A, LIU B, RAZA S, et al.. Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice [J/OL]. Plant Commun., 2024, 5(2): 100741 [2024-07-10]. . |
| [70] | ZHANG A, SHAN T, SUN Y, et al.. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors [J]. Plant Biotechnol. J., 2023, 21(12): 2597-2610. |
| [71] | WU Y, XIAO N, CAI Y, et al.. CRISPR-Cas9-mediated editing of the OsHPPD 3’ UTR confers enhanced resistance to HPPD-inhibiting herbicides in rice [J/OL]. Plant Commun., 2023, 4(5): 100605 [2024-07-10]. . |
| [72] | LIN Q, ZONG Y, XUE C, et al.. Prime genome editing in rice and wheat [J]. Nat. Biotechnol., 2020, 38(5): 582-585. |
| [1] | 王可欣, 董月华, 何炫颐, 杨怀玉. 植物赖氨酸吸收与代谢调控及对植物的影响[J]. 中国农业科技导报, 2025, 27(7): 20-29. |
| [2] | 王伟明, 潘欣, 孔德平, 安宇, 郭爽, 孙志梅, 薛澄, 孙荣军, 马文奇, 许华森. 我国作物多性化时空变化特征及影响因素[J]. 中国农业科技导报, 2025, 27(6): 16-27. |
| [3] | 侯赛赛, 仝姗姗, 王鹏企, 谢冰雪, 张瑞芳, 王鑫鑫. 生物炭和秸秆对不同作物生长性状和养分吸收的影响[J]. 中国农业科技导报, 2025, 27(4): 179-191. |
| [4] | 陈自立, 林卫, 贺佳, 王来刚, 郑国清, 彭一龙, 焦家东, 郭燕. 基于卷积神经网络的农作物病害识别研究[J]. 中国农业科技导报, 2025, 27(4): 99-109. |
| [5] | 李鑫, 聂宇成, 杨婕, 金小俊, 陈勇, 于佳琳. 基于双喷施系统的并联除草机器人研制与仿真分析[J]. 中国农业科技导报, 2025, 27(2): 108-115. |
| [6] | 马雪晴, 冀傲冉, 郑娇莉, 曹春霞, 龚艳, 黄大野, 王蓓蓓. 植物根际促生菌促生机制及其应用研究进展[J]. 中国农业科技导报, 2025, 27(2): 13-23. |
| [7] | 赵培强, 崔永峰, 徐亚, 李明丽. 工业集聚区土壤和农作物重金属赋存特征解析[J]. 中国农业科技导报, 2024, 26(8): 163-171. |
| [8] | 刘霏霏, 何万荣, 孙强, 席琳乔, 廖结安, 韩路. 苜蓿绿肥对塔里木盆地苹果园土壤细菌多样性和功能的影响[J]. 中国农业科技导报, 2024, 26(8): 223-233. |
| [9] | 柳亚峰, 方志超, 夏海峰, 曲永波, 吴明亮. 对辊拨刷式藠头收获机设计与试验[J]. 中国农业科技导报, 2024, 26(6): 72-81. |
| [10] | 黄诗锐, 王天一, 文韬, 周江龙. 基于改进YOLOv7的农作物虫害识别[J]. 中国农业科技导报, 2024, 26(11): 107-116. |
| [11] | 杨丽莹, 邰孟雅, 翟夜雨, 许自成, 黄五星. 硫对植物吸收积累镉的影响及其作用机制研究进展[J]. 中国农业科技导报, 2023, 25(8): 10-21. |
| [12] | 孔令博, 林巧, 聂迎利, 王晶静, 魏虹. 中国农作物种业发展现状及对策分析[J]. 中国农业科技导报, 2023, 25(4): 1-13. |
| [13] | 胡秀文, 邓波, 王金斌, 刘华, 唐雪明, 王宇, 曾海娟, 蒋玮, 李红. 基于RPA技术对转CP4-EPSPS基因产品的快速检测[J]. 中国农业科技导报, 2023, 25(2): 227-233. |
| [14] | 李浩辉, 刘彩月, 张海文, 王旭静, 唐巧玲, 王友华. 2022年度全球转基因作物产业化发展现状及趋势分析[J]. 中国农业科技导报, 2023, 25(12): 6-16. |
| [15] | 赵欣, 王怡霏, 王嘉嘉, 王佩瑶, 王桂端, 朱利霞, 李俐俐. 木霉菌对作物及土壤生态环境的影响[J]. 中国农业科技导报, 2023, 25(11): 166-172. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||