中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (2): 227-233.DOI: 10.13304/j.nykjdb.2021.0785
• 方法与技术创新 • 上一篇
胡秀文1(), 邓波2(
), 王金斌3, 刘华3(
), 唐雪明4(
), 王宇5, 曾海娟3, 蒋玮3, 李红6
收稿日期:
2021-09-07
接受日期:
2021-10-20
出版日期:
2023-02-15
发布日期:
2023-05-17
通讯作者:
刘华,唐雪明
作者简介:
胡秀文 E-mail:849727644@qq.com基金资助:
Xiuwen HU1(), Bo DENG2(
), Jinbin WANG3, Hua LIU3(
), Xueming TANG4(
), Yu WANG5, Haijuan ZENG3, Wei JIANG3, Hong LI6
Received:
2021-09-07
Accepted:
2021-10-20
Online:
2023-02-15
Published:
2023-05-17
Contact:
Hua LIU,Xueming TANG
摘要:
核酸检测在农产品安全检测中的应用十分广泛,随着转基因作物的商业化种植,迫切需要一种快速、特异、灵敏的转基因作物检测方法。利用重组酶聚合酶扩增(recombinase polymerase amplification,RPA)技术对含有转基因产品及其制品中CP4-EPSPS基因进行检测,共设计5对引物来筛取最佳引物,并对反应体系和反应温度进行优化。结果表明,该方法采用20 μL体系在37 ℃恒温反应15 min即可对CP4-EPSPS基因进行快速检测。该方法检测转基因的灵敏度阈值为45拷贝,灵敏度高、特异性强,为大规模筛查CP4-EPSPS基因提供了一种新的途径。
中图分类号:
胡秀文, 邓波, 王金斌, 刘华, 唐雪明, 王宇, 曾海娟, 蒋玮, 李红. 基于RPA技术对转CP4-EPSPS基因产品的快速检测[J]. 中国农业科技导报, 2023, 25(2): 227-233.
Xiuwen HU, Bo DENG, Jinbin WANG, Hua LIU, Xueming TANG, Yu WANG, Haijuan ZENG, Wei JIANG, Hong LI. Rapid Detection of CP4-EPSPS Transgenic Products Based on RPA Technology[J]. Journal of Agricultural Science and Technology, 2023, 25(2): 227-233.
转基因作物 Genetically modified crop | 名称 Name | CP4-EPSPS基因 CP4-EPSPS gene |
---|---|---|
转基因玉米 Transgenic maize | NK603 | 阳性 Positive |
转基因大豆 Transgenic Soybean | MON89788 | 阳性 Positive |
转基因棉花 Transgenic cotton | MON1445, MON88913 | 阳性 Positive |
转基因油菜 Transgenic rapeseed | GT73 | 阳性 Positive |
转基因苜蓿 Transgenic alfalfa | J101; J163 | 阳性 Positive |
转基因甜菜 Transgenic beet | H7-1 | 阳性 Positive |
转基因玉米 Transgenic maize | BT11; 59112; MON863 | 阴性 Negative |
转基因油菜 Transgenic rapeseed | RF1 | 阴性 Negative |
转基因水稻 Transgenic rice | KMD | 阴性 Negative |
表1 试验材料
Table 1 Experimental materials
转基因作物 Genetically modified crop | 名称 Name | CP4-EPSPS基因 CP4-EPSPS gene |
---|---|---|
转基因玉米 Transgenic maize | NK603 | 阳性 Positive |
转基因大豆 Transgenic Soybean | MON89788 | 阳性 Positive |
转基因棉花 Transgenic cotton | MON1445, MON88913 | 阳性 Positive |
转基因油菜 Transgenic rapeseed | GT73 | 阳性 Positive |
转基因苜蓿 Transgenic alfalfa | J101; J163 | 阳性 Positive |
转基因甜菜 Transgenic beet | H7-1 | 阳性 Positive |
转基因玉米 Transgenic maize | BT11; 59112; MON863 | 阴性 Negative |
转基因油菜 Transgenic rapeseed | RF1 | 阴性 Negative |
转基因水稻 Transgenic rice | KMD | 阴性 Negative |
引物名称 Primer name | 引物序列 Primer sequences (5’-3’) | 扩增产物大小 Amplification product length/bp | GenBank ID |
---|---|---|---|
RPA-CP4-1-F | CCAATCACCTACAGGGTACCTATGGCTTCCGCTCA | 172 | KJ701163 |
RPA-CP4-1-R | CAGCATCAGTCTCAACGGTAAGGTTAGCACCAAAA | ||
RPA-CP4-2-F | CACTGAAAAGATGCTTCAAGGTTTTGGTGCTAACC | 150 | |
RPA-CP4-2-R | AATGGGAAAGCAGTAGAGGATGGATCACCTGGAAC | ||
RPA-CP4-3-F | TCAACACCCCAGGTATCACCACTGTTATCGAGCCA | 148 | |
RPA-CP4-3-R | AGCTTACCACGACCTTCAAGACGGATGGTACGCAC | ||
RPA-CP4-4-F | CAATCACCTACAGGGTACCTATGGCTTCCGCTC | 167 | |
RPA-CP4-4-R | ATCAGTCTCAACGGTAAGGTTAGCACCAAAA | ||
RPA-CP4-5-F | TCTCAACACCCCAGGTATCACCACTGTTATCGAGC | 204 | AF464188 |
RPA-CP4-5-R | CAGCAACCAATGGGAAAGCAGTAGAGGATGGATCA |
表2 RPA引物
Table 2 RPA primers
引物名称 Primer name | 引物序列 Primer sequences (5’-3’) | 扩增产物大小 Amplification product length/bp | GenBank ID |
---|---|---|---|
RPA-CP4-1-F | CCAATCACCTACAGGGTACCTATGGCTTCCGCTCA | 172 | KJ701163 |
RPA-CP4-1-R | CAGCATCAGTCTCAACGGTAAGGTTAGCACCAAAA | ||
RPA-CP4-2-F | CACTGAAAAGATGCTTCAAGGTTTTGGTGCTAACC | 150 | |
RPA-CP4-2-R | AATGGGAAAGCAGTAGAGGATGGATCACCTGGAAC | ||
RPA-CP4-3-F | TCAACACCCCAGGTATCACCACTGTTATCGAGCCA | 148 | |
RPA-CP4-3-R | AGCTTACCACGACCTTCAAGACGGATGGTACGCAC | ||
RPA-CP4-4-F | CAATCACCTACAGGGTACCTATGGCTTCCGCTC | 167 | |
RPA-CP4-4-R | ATCAGTCTCAACGGTAAGGTTAGCACCAAAA | ||
RPA-CP4-5-F | TCTCAACACCCCAGGTATCACCACTGTTATCGAGC | 204 | AF464188 |
RPA-CP4-5-R | CAGCAACCAATGGGAAAGCAGTAGAGGATGGATCA |
成分Ingredient | 反应体积 Reaction volume/μL | |||
---|---|---|---|---|
50 | 25 | 20 | 15 | |
Buffer | 29.50 | 14.75 | 11.80 | 8.85 |
Primer-F | 2.40 | 1.20 | 1.00 | 0.70 |
Primer-R | 2.40 | 1.20 | 1.00 | 0.70 |
DNA | 2.00 | 1.00 | 0.80 | 0.60 |
ddH2O | 11.20 | 5.60 | 4.20 | 3.40 |
MgOAC | 2.50 | 1.25 | 1.00 | 0.75 |
表3 RPA体系优化
Table 3 RPA system optimization
成分Ingredient | 反应体积 Reaction volume/μL | |||
---|---|---|---|---|
50 | 25 | 20 | 15 | |
Buffer | 29.50 | 14.75 | 11.80 | 8.85 |
Primer-F | 2.40 | 1.20 | 1.00 | 0.70 |
Primer-R | 2.40 | 1.20 | 1.00 | 0.70 |
DNA | 2.00 | 1.00 | 0.80 | 0.60 |
ddH2O | 11.20 | 5.60 | 4.20 | 3.40 |
MgOAC | 2.50 | 1.25 | 1.00 | 0.75 |
图1 RPA-CP4-1~RPA-CP4-5的扩增产物注:1~5分别为引物RPA-CP4-1~RPA-CP4-5;6为空白对照;M为2 000的maker。
Fig. 1 Amplification products of RPA-CP4-1~RPA-CP4-5Note:1~5 represent the amplified bands of RPA primers RPA-CP4-1~RPA-CP4-5, respectively; 6 represents the blank control; M is the maker of 2 000.
图2 不同体积反应体系的扩增产物注:1~4分别表示体系为50、25、20 和15 μL。
Fig. 2 Amplification products of different reaction systemNote:1~4 indicate that the system of 50, 25, 20 and 15 μL, respectively.
图3 不同反应温度的扩增产物注:1~8分别表示温度35、36、37、38、39、40、41、42 ℃;9空白对照;M为1 000的maker。
Fig. 3 Amplification products of different reaction temperaturesNote:1~8 represent the maker with temperature 35, 36, 37, 38, 39, 40, 41, 42 ℃; 9 is blank control, M is the maker of 1 000.
图4 RPA特异性检测注:1—2~9的DNA混合样品;2—转基因玉米BT-11;3—转基因水稻KMD;4—转基因玉米59112;5—转基因玉米MON863;6—转基因油菜RF1;7—非转基因大豆;8—非转基因玉米;9—转基因大豆MON88913。
Fig. 4 RPA specificity detectionNote:1—Mixture of 2~9; 2—Genetically modified corn BT-11; 3—Genetically modified rice KMD; 4—Genetically modified corn 59112; 5—Genetically modified corn MON863; 6—Genetically modified rape RF1; 7—Non-transgenic soybean; 8—Non-transgenic corn; 9—Genetically modified soybean MON88913.
图5 RPA灵敏度检测注:1—4.5×107;2—4.5×106;3—4.5×105;4—4.5×104;5—4.5×103;6—4.5×102;7—4.5×101;8—4.5×100;9—空白对照。
Fig. 5 RPA sensitivity detectionNote:1—4.5×107; 2—4.5×106; 3—4.5×105; 4—4.5×104; 5—4.5×103; 6—4.5×102; 7—4.5×101; 8—4.5×100; 9—Blank control.
图6 转基因制品检测注:1—空白对照;2—转基因苜蓿J101;3—转基因甜菜H7-1;4—转基因油菜GT73;5—转基因棉花MON88913;6—转基因棉花MON1445;7—转基因苜蓿J163;8—转基因大豆MON89788;9—转基因玉米NK603。
Fig. 6 Detection of genetically modified productsNote:1—Blank control; 2—Transgenic alfalfa J101; 3—Transgenic sugar beet H7-1; 4—Transgenic rape GT73; 5—Transgenic cotton MON88913; 6—Transgenic cotton MON1445; 7—Transgenic alfalfa J163; 8—Transgenic Soybean MON89788; 9—Transgenic corn NK603.
分析方法 Analytical method | 检测靶标 Detection target | 灵敏度Sensitivity | 时间 Time/min | 使用条件 Conditions required | 参考文献Reference |
---|---|---|---|---|---|
重组酶聚合酶扩增 RPA | CP4-EPSPS | 高High | 15 | Laboratory 实验室 | [ |
聚合酶链反应 PCR | PAT, BAR, Cry1Ab/Ac, p35s, tNOS, CTP2-EPSPS | 高High | 90 | Laboratory 实验室 | [ |
数字多聚酶链式反应 Digital PCR | MON87705, MON87769, DP356043 | 高High | 90 | Laboratory 实验室 | [ |
环介导等温扩增 LAMP | CP4-EPSPS | 高High | 60 | Laboratory 实验室 | [ |
酶联免疫反应 ELISA | Cry1 | 高High | 120 | Laboratory 实验室 | [ |
电化学免疫传感器Electrochemical immunosensor | CP4-EPSPS | 高High | 120 | Laboratory 实验室 | [ |
实时荧光定量 qPCR | CP4-EPSPS | 高High | 90 | Laboratory 实验室 | [ |
表4 核酸检测方法比较
Table 4 Comparison of nucleic acid detection methods
分析方法 Analytical method | 检测靶标 Detection target | 灵敏度Sensitivity | 时间 Time/min | 使用条件 Conditions required | 参考文献Reference |
---|---|---|---|---|---|
重组酶聚合酶扩增 RPA | CP4-EPSPS | 高High | 15 | Laboratory 实验室 | [ |
聚合酶链反应 PCR | PAT, BAR, Cry1Ab/Ac, p35s, tNOS, CTP2-EPSPS | 高High | 90 | Laboratory 实验室 | [ |
数字多聚酶链式反应 Digital PCR | MON87705, MON87769, DP356043 | 高High | 90 | Laboratory 实验室 | [ |
环介导等温扩增 LAMP | CP4-EPSPS | 高High | 60 | Laboratory 实验室 | [ |
酶联免疫反应 ELISA | Cry1 | 高High | 120 | Laboratory 实验室 | [ |
电化学免疫传感器Electrochemical immunosensor | CP4-EPSPS | 高High | 120 | Laboratory 实验室 | [ |
实时荧光定量 qPCR | CP4-EPSPS | 高High | 90 | Laboratory 实验室 | [ |
1 | 国际农业生物技术应用服务组织.2019年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,2021,41(1):114-119. |
2 | 吴珊,庞俊琴,庄军红,等.我国转基因作物的研发与安全管理[J].中国农业科技导报,2020,22(11):11-16. |
WU S, PANG J Q, ZHUANG J H, et al.. Research and development and safety management of genetically modified crops in China [J]. J. Agric. Sci. Technol., 2020, 22(11):11-16. | |
3 | MATHUR V, JAVID L, KULSHRESTHA S, et al.. World Cultivation of Genetically Modified Crops: Opportunities and Risks [M]. Sustainable Agriculture Reviews, Springer, 2017:45-87. |
4 | LIN C H, PAN T M. Perspectives on genetically modified crops and food detection [J]. J. Food. Drug. Anal., 2016, 24(1):1-8. |
5 | CASTAN M, ALI S, HOCHEGGER R, et al.. Analysis of the genetic stability of event NK603 in stacked corn varieties using high-resolution melting (HRM) analysis and Sanger sequencing [J]. Eur. Food Res. Technol., 2016, 243(3):1-13. |
6 | DILL G M, CAJACOB C A, PADGETTE S R. Glyphosate-resistant crops: adoption, use and future considerations [J]. Pest. Manag. Sci., 2008, 64(4):326-331. |
7 | KUMAR K, GAMBHIR G, DASS A, et al.. Genetically modified crops: current status and future prospects [J/OL]. Planta, 2020, 251(4):91 [2021-08-10]. . |
8 | 焦健.2020年上半年欧盟RASFF系统对华农产品通报分析[J].高科技与产业化,2020(9):72-75. |
JIAO J. Analysis of EU RASFF notifications to China’s agricultural products in the first half of 2020 [J]. High-Technol. Ind., 2020(9):72-75. | |
9 | HOLST-JENSEN A. Testing for genetically modified organisms (GMOs): past, present and future perspectives [J]. Biotechnol. Adv., 2009, 27(6):1071-1082. |
10 | HADIDI A, KYRIAKOPOULOU P E, BARBA M. Major Advances in the History of Plant Virology [M]. New York: Academic Press, 2020:3-24. |
11 | RUBIO L, GALIPIENSO L, FERRIOL I. Detection of plant viruses and disease management: relevance of genetic diversity and evolution [J]. Front Plant Sci., 2020, 11:1092-1114. |
12 | CHEN Q, YAO C, YANG C, et al.. Development of an in-situ signal amplified electrochemical assay for detection of Listeria monocytogenes with label-free strategy [J]. Food Chem., 2021, 358:129894-129990. |
13 | PRASITPORN T, SENAPIN S, VANIKSAMPANNA A, et al.. Development of cross-priming amplification (CPA) combined with colorimetric and lateral flow dipstick visualization for scale drop disease virus (SDDV) detection [J]. J. Fish Dis., 2021. 44(9):1411-1422. |
14 | MARANO J M, CHUONG C, WEGER-LUCARELLI J. Rolling circle amplification: a high fidelity and efficient alternative to plasmid preparation for the rescue of infectious clones [J]. Virology, 2020, 551:58-63. |
15 | PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al.. DNA detection using recombination proteins [J]. Plos Biol., 2006, 4(7):1115-1121. |
16 | ZIA Q, ALAWAMI M, MOKHTAR N F K, et al.. Current analytical methods for porcine identification in meat and meat products [J]. Food Chem., 2020, 324:126664-126743. |
17 | DONG Y, ZHAO P P, CHEN L, et al.. Fast, simple and highly specific molecular detection of Vibrio alginolyticus pathogenic strains using a visualized isothermal amplification method [J]. BMC Vet. Res., 2020, 16(1):76-87. |
18 | LI J, MACDONALD J, STETTEN V. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification [J]. Analyst, 2020, 145(5):1950-1960. |
19 | 王亚楠,陈昌国.重组酶聚合酶扩增技术研究进展[J].解放军医学杂志,2021,46(5):504-511. |
WANG Y N, CHEN C G. Research progress of recombinant polymerase amplification technology [J]. PLA Med. J., 2021, 46(5):504-511. | |
20 | GARRIDO-MAESTU A, AZINHEIRO S, CARVALHO J, et al.. Development and evaluation of loop-mediated isothermal amplification, and recombinase polymerase amplification methodologies, for the detection of listeria monocytogenes in ready to-eat food samples [J]. Food Control, 2018, 86:27-34. |
21 | MCQUILLAN J S, WILSON M W. Recombinase polymerase amplification for fast, selective, DNA-based detection of faecal indicator Escherichia coli [J]. Lett. App. Microbiol., 2021, 72(4):382-389. |
22 | PANG Y, CONG F, ZHANG X, et al.. A recombinase polymerase amplification-based assay for rapid detection of Chlamydia psittaci [J]. Poult. Sci., 2021, 100(2):585-591. |
23 | WAND N I V, BONNEY L C, Watson R J, et al.. Point-of-care diagnostic assay for the detection of Zika virus using the recombinase polymerase amplification method [J]. J. Gen. Virol., 2018, 99(8):1012-1026. |
24 | WANG X, XIE S, CHEN X, et al.. A rapid and convenient method for on-site detection of MON863 maize through real-time fluorescence recombinase polymerase amplification [J]. Food Chem., 2020, 324:126821-126826. |
25 | 龙丽坤,赵宁,夏蔚,等.转基因玉米CM8101特异性定性PCR检测方法[J].中国农学通报,2021,37(23):23-28. |
LONG L K, ZHAO N, XIA W, et al.. Detection of CM8101 specific qualitative PCR in transgenic maize [J]. Chin. Agric. Sci. Bull., 2021, 37(23):23-28. | |
26 | 卢海强,焦新雅,吴思源,等.数字PCR在食源性致病菌检测中的应用进展[J].生物技术进展,2021,11(3):260-268. |
LU H Q, JIAO X Y, WU S Y, et al.. Application progress of digital PCR in detection of foodborne pathogens [J]. Progress Biotechnol., 2021, 11(3): 260-268. | |
27 | 单大鹏, 王晓云, 洪志鹏, 等. 转Cry1Ia基因抗虫大豆对鳞翅目靶标害虫的抗性分析[J].东北农业大学学报,2021,52(5): 1-9. |
SHAN D P, WANG X Y, HONG Z P, et al.. Analysis of the resistance of transgenic Cry1Ia insect-resistant soybean to lepidopteran target pests [J]. J. Northeast Agric. Univ., 2021, 52(5):1-9. | |
28 | 高鸿飞. 基于免疫传感新方法的外源蛋白分析研究[D].武汉:华中农业大学,2020. |
GAO H F. Research on the analysis of foreign proteins based on new methods of immunosensing [D]. Wuhan: Huazhong Agricultural University, 2020. |
[1] | 李浩辉, 刘彩月, 张海文, 王旭静, 唐巧玲, 王友华. 2022年度全球转基因作物产业化发展现状及趋势分析[J]. 中国农业科技导报, 2023, 25(12): 6-16. |
[2] | 吴珊,庞俊琴,庄军红,陈丽梅*. 我国转基因作物的研发与安全管理[J]. 中国农业科技导报, 2020, 22(11): 11-16. |
[3] | 安娜1,2,郑子繁2,董美2,刘卫晓2,宛煜嵩2,金芜军2,李亮2*,韩阳1*. 基于表面等离子体共振的核酸传感器研究进展[J]. 中国农业科技导报, 2019, 21(5): 55-61. |
[4] | 孙卓婧1,张安红2,叶纪明1*. 转基因作物研发现状及展望[J]. 中国农业科技导报, 2018, 20(7): 11-18. |
[5] | 张立兰,陈亮,张宏福*. 转基因作物对畜禽肠道非预期效应的研究进展[J]. 中国农业科技导报, 2018, 20(11): 1-13. |
[6] | 祁潇哲,黄昆仑*. 转基因食品安全评价研究进展[J]. , 2013, 15(4): 14-19. |
[7] | 李鑫鑫1,李晓晖1,李亮1,平淑珍1,陈明1,张维1,燕永亮1,赵新宇2,陆伟1. 转基因作物对于土壤微生物的影响[J]. , 2010, 12(6): 24-27. |
[8] | 周长发,张锐,张晓,罗淑萍,郭三堆. 地高辛随机引物法标记探针的Southern杂交技术优化[J]. , 2009, 11(4): 123-128. |
[9] | 徐鸿林,翟红利,王锋,朴建华,杨晓光,朱祯. 豇豆胰蛋白酶抑制剂基因(cpti)及其在抗虫转基因作物中的应用[J]. , 2008, 10(1): 18-27. |
[10] | 刘蓉蓉|文学. 遗传利用限制技术(GURTs)的发展及应用前景[J]. , 2008, 10(1): 58-62. |
[11] | Valerie J. Karplus[1] 邓兴旺[1,2,3]. 从实验室到田间:中国农业生物技术的发展及其影响[J]. , 2007, 9(3): 4-8. |
[12] | 陈洁君[1] 王劲[2] 宛煜嵩[3] 金芜军[3]. 转基因作物安全性评价与商品化前景分析[J]. , 2007, 9(3): 38-43. |
[13] | 张军民[1] 胡广东[2] 等. 转基因食品与饲料安全及其评价[J]. , 2002, 4(4): 21-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||