








中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (11): 216-225.DOI: 10.13304/j.nykjdb.2024.0304
• 生物制造 资源生态 • 上一篇
收稿日期:2024-04-17
接受日期:2024-10-31
出版日期:2025-11-15
发布日期:2025-11-17
通讯作者:
高永
作者简介:袁嘉茂 E-mail:1277737185@qq.com;
基金资助:Received:2024-04-17
Accepted:2024-10-31
Online:2025-11-15
Published:2025-11-17
Contact:
yong GAO
摘要:
为明确沙区光伏电站平单轴低桩追踪式光伏电板对土壤养分空间分布特征的影响,以内蒙古西部典型沙区光伏电站植被自然恢复区内平单轴低桩追踪式光伏电板下的土壤为研究对象,将光伏电板分为光伏板间(IP)、板前(FP)、板后(BP)、板下(UP)4个位置,同时在每个位置设置0—10、10—20、20—40、40—60、60—100 cm共5种土层深度,以光伏电站内无任何光伏措施的裸沙地为对照(CK),通过相关分析及单因素方差分析探究平单轴低桩追踪式光伏电板下土壤的养分水平以及垂直分布特征,进一步利用主成分分析对该场区不同位置的土壤质量进行评价。结果表明,追踪式光伏电板的建设会降低光伏场区的大气温度与大气湿度。电板不同位置的土壤水分和土壤容重均表现出随土层深度的增加而增加的规律。追踪式光伏电板的建设会增加土壤的养分含量,土壤碱解氮、有机质、速效钾含量随土层深度的增加而降低,速效磷含量在不同深度之间变化不大且呈现波动性变化。追踪式光伏电板区域的土壤质量较CK位置有所提高,其中IP、FP、RP位置的土壤质量较好,UP与CK位置的土壤质量较差,表明沙区追踪式光伏电板的建设与运营会提高场区内的土壤质量。研究结果为沙区光伏电站的生态修复提供理论支持。
中图分类号:
袁嘉茂, 高永. 沙区追踪式光伏阵列区域土壤养分空间分异特征[J]. 中国农业科技导报, 2025, 27(11): 216-225.
Jiamao YUAN, yong GAO. Spatial Differentiation Characteristics of Soil Nutrients in Sand Area Tracking Photovoltaic Array Area[J]. Journal of Agricultural Science and Technology, 2025, 27(11): 216-225.
图2 光伏电板不同位置大气温湿度注:不同小写字母表示光伏场区不同位置间在P<0.05水平差异显著。
Fig. 2 Temperature and humidity at different positions of photovoltaic panelsNote: Different lowercase letters indicate significant differences between different locations in the photovoltaic field at P<0.05 level.
图3 光伏电板不同位置的土壤水分和容重注:不同小写字母表示光伏场区不同位置间在P<0.05水平差异显著。
Fig. 3 Soil moisture and bulk density at different positions of photovoltaic panelsNote: Different lowercase letters indicate significant differences between different locations in the photovoltaic field at P<0.05 level.
图4 光伏电板不同位置土壤养分特征注:不同小写字母表示光伏场区不同位置间土壤养分在P<0.05水平差异显著。
Fig. 4 Characteristic of soil nutrient content at different positions of photovoltaic panelsNote: Different lowercase letters indicate significant differences in soil nutrients between different locations in the photovoltaic field at P<0.05 level.
图5 光伏电板不同深度土壤养分特征注:不同小写字母表示光伏场区不同深度间土壤养分在P<0.05水平差异显著。
Fig. 5 Characteristic of soil nutrient content at different depths of photovoltaic panelsNote: Different lowercase letters indicate significant differences in soil nutrients between different depths in the photovoltaic field area at P<0.05 level.
指标 Indicator | 主成分Principal component | 公因子方差Communality/% | 分组Group | |
|---|---|---|---|---|
| 1 | 2 | |||
| 有机质Organic matter | -0.333 | 0.908 | 93.5 | 1 |
| 碱解氮AN | 0.166 | 0.940 | 91.1 | 1 |
| 速效钾AK | 0.851 | 0.375 | 86.5 | 1 |
| 速效磷AP | 0.955 | -0.199 | 95.2 | 1 |
| 土壤容重Soil bulk density | -0.186 | -0.179 | 6.7 | 2 |
| 土壤水分Soil moisture | -0.901 | 0.017 | 81.1 | 2 |
| 特征值Eigenvalue | 2.620 | 1.919 | ||
| 方差贡献率Variance contribution rate/% | 43.67 | 31.99 | ||
| 累积方差贡献率Accumulative variance contribution rate/% | 43.67 | 75.66 | ||
表1 土壤质量评价的主成分分析
Table 1 Principal component analysis of soil fertility quality evaluation indexes
指标 Indicator | 主成分Principal component | 公因子方差Communality/% | 分组Group | |
|---|---|---|---|---|
| 1 | 2 | |||
| 有机质Organic matter | -0.333 | 0.908 | 93.5 | 1 |
| 碱解氮AN | 0.166 | 0.940 | 91.1 | 1 |
| 速效钾AK | 0.851 | 0.375 | 86.5 | 1 |
| 速效磷AP | 0.955 | -0.199 | 95.2 | 1 |
| 土壤容重Soil bulk density | -0.186 | -0.179 | 6.7 | 2 |
| 土壤水分Soil moisture | -0.901 | 0.017 | 81.1 | 2 |
| 特征值Eigenvalue | 2.620 | 1.919 | ||
| 方差贡献率Variance contribution rate/% | 43.67 | 31.99 | ||
| 累积方差贡献率Accumulative variance contribution rate/% | 43.67 | 75.66 | ||
图6 光伏场区大气温湿度和土壤指标相关性分析注:*表示在P<0.05水平相关显著。
Fig. 6 Correlation analysis of air temperature, humidity and soil indicators in the photovoltaic field areaNote:* indicates significant correlation at P<0.05 level.
位置 Position | Y1得分 Y1 score | Y2得分 Y2 score | 综合得分 Comprehensive score | 排名 Rank |
|---|---|---|---|---|
| IP | 2.34 | -0.84 | 0.75 | 1 |
| FP | -0.24 | 1.35 | 0.33 | 3 |
| UP | -1.36 | 0.84 | -0.32 | 4 |
| BP | 0.73 | 0.65 | 0.53 | 2 |
| CK | -1.48 | -2.01 | -1.29 | 5 |
表2 主成分得分和综合得分
Table 2 Principal component score and comprehensive score
位置 Position | Y1得分 Y1 score | Y2得分 Y2 score | 综合得分 Comprehensive score | 排名 Rank |
|---|---|---|---|---|
| IP | 2.34 | -0.84 | 0.75 | 1 |
| FP | -0.24 | 1.35 | 0.33 | 3 |
| UP | -1.36 | 0.84 | -0.32 | 4 |
| BP | 0.73 | 0.65 | 0.53 | 2 |
| CK | -1.48 | -2.01 | -1.29 | 5 |
| [1] | 朱吉庆,宋雨昂.太阳能光伏发电技术发展现状与前景[J].对外经贸,2024(1):31-34, 131. |
| ZHU J Q, SONG Y A. Solar photovoltaic power generation technology and its development status and prospects [J]. Foreign Econ. Relations Trade, 2024 (1): 31-34, 131. | |
| [2] | 屈准,杨肃昌,肖建华.双碳背景下中国西北地区光伏电站建设现状与潜力分析[J].干旱区资源与环境,2024,38(2):20-26. |
| QU Z, YANG S C, XIAO J H. Current situation and potential of photovoltaic power plant construction in northwestern China under the background of carbon peaking and carbon neutrality [J]. J. Arid Land Resour. Environ., 2024, 38(2): 20-26. | |
| [3] | 丁冠元,张军华.双碳背景下我国光伏行业碳排放数据库建设必要性分析[J].信息技术与标准化,2023(12):53-56. |
| DING G Y, ZHANG J H. Necessity analysis of carbon emission database construction in China’s photovoltaic industry under the dual carbon background [J]. Inf. Technol. Stand., 2023(12): 53-56. | |
| [4] | 王祯仪,汪季,高永,等.光伏电站建设对沙区生态环境的影响[J].水土保持通报,2019,39(1):191-196. |
| WANG Z Y, WANG J, GAO Y, et al.. Impacts of photovoltaic power station construction on ecology environment in sandy area [J]. Bull. Soil Water Conserv., 2019, 39(1):191-196. | |
| [5] | 田政卿,张勇,刘向, 等.光伏电站建设对陆地生态环境的影响:研究进展与展望[J].环境科学,2024,45(1):239-247. |
| TIAN Z Q, ZHANG Y, LIU X, et al.. Effects of photovoltaic power station construction on terrestrial environment: retrospect and prospect [J]. Environ. Sci., 2024, 45 (1):239-247. | |
| [6] | 崔杨,陈正洪.光伏电站对局地气候的影响研究进展[J].气候变化研究进展,2018,14(6):593-601. |
| CUI Y, CHEN Z H. Research progresses of the impacts of photovoltaic power plants on local climate [J]. Clim. Change Res., 2018, 14(6): 593-601. | |
| [7] | HERNANDEZ R R, EASTER S B, MURPHY-MARISCAL M L, et al.. Environmental impacts of utility-scale solar energy [J].Renewable Sustain. Energy Rev., 2015, 29: 766-779. |
| [8] | 杨丽薇,高晓清,吕芳,等.光伏电站对格尔木荒漠地区太阳辐射场的影响研究[J].太阳能学报,2015,36(9):2160-2166. |
| YANG L W, GAO X Q, LYU F, et al.. Study on the impact of large solar farm on radiation field in desert areas of Golmud [J]. Acta Energiae Solaris Sin., 2015, 36(9):2160-2166. | |
| [9] | CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics second edition [M]. New York: Springer, 2000:15-23 |
| [10] | ARMSTRONG A, OSTLE N J, WHITAKER J. Solar park microclimate and vegetation management effects on grassland carbon cycling [J/OL]. Environ. Res. Lett., 2016, 11(7):074016[2024-03-16]. . |
| [11] | 赵晶,张有新,李文龙,等.光伏电站内不同植被下土壤C、N、P化学计量特征[J].中国土壤与肥料,2021(5): 21-26. |
| ZHAO J, ZHANG Y X, LI W L, et al.. Stoichiometric characteristics of soil C, N and P under different vegetation in the photovoltaic power station [J]. Soil Fert. Sci. China, 2021(5): 21-26. | |
| [12] | 翟波,高永,党晓宏,等.内蒙古中部草原区光伏电站对土壤水分及其脉冲响应的作用机制[J].太阳能学报,2022,43(6):49-56. |
| ZHAI B, GAO Y, DANG X H, et al.. Mechanism of photovoltaic power station on soil moisture and its impulse response in grassland region of central Inner Mongolia [J]. Acta Energiae Solaris Sin., 2022, 43(6): 49-56. | |
| [13] | 王颖,李国庆,周洁,等.光伏阵列对土壤水分的影响研究[J].太阳能,2021(7):53-58. |
| WANG Y, LI G Q, ZHOU J, et al.. Research on influence of PV array on soil moisture [J]. Solar Energy, 2021(7):53-58. | |
| [14] | TSOUTSOS T, FRANTZESKAKI N, GEKAS V. Environmental impacts from the solar energy technologies [J]. Energy Policy, 2005, 33(3):289-296. |
| [15] | HASSANPOUR ADEH E, SELKER J S, HIGGINS C W. Remarkable agrivoltaic influence on soil moisture,micrometeorology and water-use efficiency [J/OL]. PLoS One, 2018, 13(11):e0203256[2024-03-16]. . |
| [16] | TANNER K E, MOORE-O'LEARY K A, PARKER I M, et al.. Simulated solar panels create altered microhabitats in desert landforms [J/OL]. Ecosphere, 2020, 11(4):e03089 [2024-03-16].. |
| [17] | 贾瑞庭,袁立敏,蒙仲举.植物措施对沙漠光伏电站土壤的改良效应[J].中国农业科技导报,2023,25(10):182-188. |
| JIA R T, YUAN L M, MENG Z J. Effects of plant measures on soil improvement of desert photovoltaic power station [J]. J. Agric. Sci. Technol., 2023, 25(10):182-188. | |
| [18] | 刘文祥,万丹,甘国权,等.干热河谷区光伏电站建设的生态效应与植被恢复探讨[J].中国水土保持,2023(1):15-19. |
| [19] | 吴智泉,罗忠新,罗久富,等.石漠化光伏场区土壤肥力质量空间分异特征[J].生态学杂志,2023,42(11):2597-2603. |
| WU Z Q, LUO Z X, LUO J F, et al.. Spatial differentiation of soil fertility in a photovoltaic power station in rocky desertification zone [J]. Chin. J. Ecol., 2023, 42(11):2597-2603. | |
| [20] | 王涛.光伏电站建设对靖边县土壤、植被的影响研究[D].杨凌:西北农林科技大学,2015. |
| WANG T. The impact of photovoltaic power construction on soil and vegetation in Jingbian county [D]. Yangling: Northwest A&F University, 2015. | |
| [21] | 屈文娟.大型光伏电站区域环境要素时空变化特征及其影响研究[D].西安:西安理工大学,2023. |
| QU W J. Study on the temporal and spatial variation characteristics of regional environmental elements of large-scale photovoltaic power plants and their impacts [D]. Xi’an:Xi’an University of Technology, 2023 | |
| [22] | CRISTINA M M, ROSITA M, LUISA M, et al.. Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area [J/OL]. Geoderma Reg., 2022, 29:00500 [2024-03-16]. . |
| [23] | WU C D, LIU H, YU Y, et al.. Ecohydrological effects of photovoltaic solar farms on soil microclimates and moisture regimes in arid Northwest China:a modeling study [J/OL]. Sci. Total Environ., 2022, 802:149946 [2024-03-16]. . |
| [24] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000:34-201. |
| [25] | 赵鹏宇,高永,陈曦,等.沙漠光伏电站对空气温湿度影响研究[J].西部资源,2016(3):125-128. |
| [26] | 高晓清,杨丽薇,吕芳,等.光伏电站对格尔木荒漠地区空气温湿度影响的观测研究[J].太阳能学报,2016,37(11):2909-2915. |
| GAO X Q, YANG L W, LYU F, et al.. Observational study on the impact of the large solar farm on air temperature and humidity in desert areas of Golmud [J]. Acta Energiae Solaris Sin., 2016, 37(11):2909-2915. | |
| [27] | 翟波,党晓宏,陈曦,等.内蒙古典型草原区光伏电板降水再分配与土壤水分蒸散分异规律[J].中国农业大学学报,2020,25(9):144-155. |
| ZHAI B, DANG X H, CHEN X, et al.. Difference regularity of precipitation redistribution and soil water evapotranspiration in photovoltaic panels in typical steppe areas of Inner Mongolia [J]. J. China Agric. Univ., 2020, 25(9):144-155. | |
| [28] | 张萌,党晓宏,崔向新,等.风沙采煤塌陷区土壤水分空间分布特征[J].内蒙古林业调查设计,2020,43(5):94-98, 67. |
| ZHANG M, DANG X H, CUI X X, et al.. Spatial distribution characteristics of soil moisture in coal mining subsidence area in windy desert area [J]. Inner Mongolia For. Investig. Des., 2020, 43(5): 94-98, 67. | |
| [29] | 王思敏,张红丽,张恒硕,等.晋西黄土区典型小流域不同土层土壤容重分布特征及其影响因素[J].生态学杂志,2024,43(3):609-615. |
| WANG S M, ZHANG H L, ZHANG H S, et al.. Distribution characteristics and influencing factors of soil bulk density at different soil layers in typical small watershed in loess region of western Shanxi province [J]. Chin. J. Ecol., 2024, 43(3):609-615. | |
| [30] | 孙志伟,梁越,喻金桃.长江上游流域土壤容重的空间分异特征[J].河南科学,2022,40(12):1927-1933. |
| SUN Z W, LIANG Y, YU J T. Spatial variation analysis of soil bulk density in the upper reaches of the Yangtze River [J]. Henan Sci., 2022, 40(12):1927-1933. | |
| [31] | 周茂荣,王喜君.光伏电站工程对土壤与植被的影响——以甘肃河西走廊荒漠戈壁区为例[J].中国水土保持科学,2019,17(2):132-138. |
| ZHOU M R, WANG X J. Influence of photovoltaic power station engineering on soil and vegetation: taking the Gobi Desert area in the Hexi Corridor of Gansu as an example [J]. Sci. Soil Water Conserv., 2019, 17(2):132-138. | |
| [32] | 王涛,王得祥,郭廷栋,等.光伏电站建设对土壤和植被的影响[J].水土保持研究,2016,23(3):90-94. |
| WANG T, WANG D X, GUO T D, et al.. The impact of photovoltaic power construction on soil and vegetation [J]. Res. Soil Water Conserv., 2016, 23(3):90-94. |
| [1] | 张曦瑜, 沈幸, 李伟, 谢文歌, 李杰, 杨昌浩, 柴仲平. 氮肥减量配施有机肥对库尔勒香梨园土壤细菌群落结构的影响[J]. 中国农业科技导报, 2025, 27(7): 217-228. |
| [2] | 米春娇, 孙洪仁, 张吉萍, 吕玉才, 张砚迪. 我国番茄土壤有效磷丰缺指标和推荐施磷量初步研究[J]. 中国农业科技导报, 2025, 27(1): 222-232. |
| [3] | 张晨阳, 徐明岗, 王斐, 李然, 孙楠. 施用有机肥对我国大豆产量及土壤养分的影响[J]. 中国农业科技导报, 2023, 25(8): 148-156. |
| [4] | 杜彩艳, 鲁海燕, 熊艳竹, 孙曦, 孙秀梅, 普继雄, 张乃明. 连续两年沼液与化肥配施对桃生长及土壤理化性质的影响[J]. 中国农业科技导报, 2023, 25(8): 165-175. |
| [5] | 肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215. |
| [6] | 刘宏元, 周志花, 赵光昕, 王艳君, 王娜娜. 改性纤维素对旱稻萌发和旱地土壤性质的影响[J]. 中国农业科技导报, 2023, 25(5): 168-175. |
| [7] | 姚佳, 刘加欣, 苏焱, 苏小娟. 烟杆炭配施氮肥对玉米苗期生长及土壤特性的影响[J]. 中国农业科技导报, 2023, 25(3): 140-151. |
| [8] | 聂婷婷, 董乙强, 杨合龙, 阿斯太肯·居力海提, 周时杰, 安沙舟. 围栏封育对蒿类荒漠植物-土壤碳氮磷化学计量特征的影响[J]. 中国农业科技导报, 2023, 25(3): 178-187. |
| [9] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
| [10] | 张月欣, 麻云霞, 马秀枝, 张金旺, 王月林, 俞海生. 大青山不同林龄榆树林的土壤酶和养分特征[J]. 中国农业科技导报, 2023, 25(12): 168-176. |
| [11] | 王诗雅, 王欣怡, 刘莹, 胡慧颖, 孙海燕, 郭伟. 石墨烯对土壤养分转化及玉米苗期根系生长的影响[J]. 中国农业科技导报, 2023, 25(11): 192-206. |
| [12] | 卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115. |
| [13] | 陈奎元, 刘卉, 丁伟. 草甘膦对大豆田土壤养分及其功能酶活性的影响[J]. 中国农业科技导报, 2022, 24(5): 180-188. |
| [14] | 何振嘉, 范王涛, 杜宜春, 王启龙. 基于土体有机重构的水肥耦合对土壤理化性质和水稻产量的影响[J]. 中国农业科技导报, 2022, 24(3): 176-185. |
| [15] | 何丽娟, 蒙仲举, 党晓宏, 吕涛. 种植甘草对风沙土机械组成与养分的影响[J]. 中国农业科技导报, 2022, 24(2): 169-176. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
