








中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (6): 36-46.DOI: 10.13304/j.nykjdb.2021.0806
吴楠(
), 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬(
)
收稿日期:2021-09-13
接受日期:2021-11-22
出版日期:2022-06-15
发布日期:2022-06-21
通讯作者:
王省芬
作者简介:吴楠 E-mail:wn2013@126.com;
基金资助:
Nan WU(
), Jun YANG, Yan ZHANG, Zhengwen SUN, Dongmei ZHANG, Lihua LI, Jinhua WU, Zhiying MA, Xingfen WANG(
)
Received:2021-09-13
Accepted:2021-11-22
Online:2022-06-15
Published:2022-06-21
Contact:
Xingfen WANG
摘要:
纤维品质改良一直是棉花育种的重要目标。基于纤维不同发育时期的RNA-seq数据,发现1个在海岛棉和陆地棉间差异表达的葡萄糖醛酸激酶基因(glucuronic acid kinase/glucuronokinase,GlcAK)。从海岛棉(Gossypium barbadense)Pima90-53纤维中克隆了GbGlcAK,其ORF为1 101 bp,编码366个氨基酸。GbGlcAK具有GHMP 激酶 N和C结构域,为GHMP超家族成员,属于可溶性非分泌蛋白,与拟南芥GlcAK亲缘关系最近。亚细胞定位结果显示GbGlcAK分布在细胞质中。超表达GbGlcAK的拟南芥叶表皮毛、下胚轴、下胚轴细胞和根的长度较野生型均极显著增加,UDP-D-GlcA代谢相关基因表达量增加,果胶含量显著增加,说明过表达GbGlcAK能够上调UDP-D-GlcA代谢通路相关基因的表达从而提高果胶含量,进而促进细胞伸长,这为进一步研究GbGlcAK在棉纤维发育中的功能提供了参考。
中图分类号:
吴楠, 杨君, 张艳, 孙正文, 张冬梅, 李丽花, 吴金华, 马峙英, 王省芬. 过表达棉花葡萄糖醛酸激酶基因GbGlcAK促进拟南芥细胞伸长[J]. 中国农业科技导报, 2022, 24(6): 36-46.
Nan WU, Jun YANG, Yan ZHANG, Zhengwen SUN, Dongmei ZHANG, Lihua LI, Jinhua WU, Zhiying MA, Xingfen WANG. Overexpression of a Cotton Glucuronokinase Gene GbGlcAK Promotes Cell Elongation in Arabidopsis thaliana[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 36-46.
引物名称 Primer names | 登录号 Accession No. | 引物序列 Primer sequences (5’-3’) | 用途 Purpose |
|---|---|---|---|
| GlcAK-F | — | TGGTATTGGCTTGGTGCAGT | 基因克隆 Gene cloning |
| GlcAK-R | CAAAAACAATCCCTAAAATGCTCTT | ||
| sGbGlcAK-R | — | GGTGGTACCCTGCTTAGACAATGT | 亚细胞定位Subcellular location |
| GbGlcAK-F | — | GGCGTCTAGAATGGATCAAAATATG | 亚细胞定位和载体构建 Subcellular location and vector construction |
| GbGlcAK-R | GGTACCCGCCTACTTAGACAATG | 载体构建 Vector construction | |
| qGbGlcAK-F | — | CATCATCAACCCTCACCCCATTC | 拟南芥实时定量PCR Real-time PCR for A. thaliana |
| qGbGlcAK-R | GCCGCATACAATAGCACTGGACC | ||
| qAtGlcAK-F | AT3G01640 | GGATAGAGCATCGGTCCTTCGC | |
| qAtGlcAK-R | CGCCATTAGCAACCTTACCCCA | ||
| qAtMIPS-F | AT4G39800 | AAGGAGAAGAATAAGGTGGATAAGGTT | |
| qAtMIPS-R | GCAATCGCATAAAGTGTTGAAGG | ||
| qAtIMP-F | AT3G02870 | GACAGAGACTGATAAAGGATGTGAAGA | |
| qAtIMP-R | AGGGAACCCGTGAACGAAAT | ||
| qAtMIOX-F | AT4G26260 | CGAAGCCATCCGCAAAGATTACC | |
| qAtMIOX-R | CCAACAACAGCCCATTGAGGAAGTC | ||
| qAtPGM-F | AT1G23190 | GCTACCTACGGTCGTCACTATTACACTCG | |
| qAtPGM-R | GTAACGGATTCCCTGGTGCTTCG | ||
| qAtUGP-F | AT5G17310 | GCCCAGCAAGGGAAAGACCG | |
| qAtUGP-R | CGATGGCACCCAAGTTGTCTGAAT | ||
| qAtUGD-F | AT5G15490 | GATTGCGGTTCTCGGCTTCG | |
| qAtUGD-R | TGCTTCACAGTGGTGGGGCTC | ||
| qAtUXS-F | AT5G59290 | TGAGAAGAATGAGGTGGTTGTTGC | |
| qAtUXS-R | GGTTGTATTTGTAGAAGATAGGAGAGGC | ||
| qAtGAE-F | AT3G23820 | GCGACGGCGGATACAAGCA | |
| qAtGAE-R | GATGGCGAAGATGAGGACGAGG | ||
| qAtUB5-F | AT3G62250 | CCTCGCCGACTACAACATCCAG | |
| qAtUB5-R | CTTCTTCCTCTTCTTAGCACCACCA |
表1 试验中用到的PCR和qPCR引物
Table 1 PCR and qPCR primers used in this study
引物名称 Primer names | 登录号 Accession No. | 引物序列 Primer sequences (5’-3’) | 用途 Purpose |
|---|---|---|---|
| GlcAK-F | — | TGGTATTGGCTTGGTGCAGT | 基因克隆 Gene cloning |
| GlcAK-R | CAAAAACAATCCCTAAAATGCTCTT | ||
| sGbGlcAK-R | — | GGTGGTACCCTGCTTAGACAATGT | 亚细胞定位Subcellular location |
| GbGlcAK-F | — | GGCGTCTAGAATGGATCAAAATATG | 亚细胞定位和载体构建 Subcellular location and vector construction |
| GbGlcAK-R | GGTACCCGCCTACTTAGACAATG | 载体构建 Vector construction | |
| qGbGlcAK-F | — | CATCATCAACCCTCACCCCATTC | 拟南芥实时定量PCR Real-time PCR for A. thaliana |
| qGbGlcAK-R | GCCGCATACAATAGCACTGGACC | ||
| qAtGlcAK-F | AT3G01640 | GGATAGAGCATCGGTCCTTCGC | |
| qAtGlcAK-R | CGCCATTAGCAACCTTACCCCA | ||
| qAtMIPS-F | AT4G39800 | AAGGAGAAGAATAAGGTGGATAAGGTT | |
| qAtMIPS-R | GCAATCGCATAAAGTGTTGAAGG | ||
| qAtIMP-F | AT3G02870 | GACAGAGACTGATAAAGGATGTGAAGA | |
| qAtIMP-R | AGGGAACCCGTGAACGAAAT | ||
| qAtMIOX-F | AT4G26260 | CGAAGCCATCCGCAAAGATTACC | |
| qAtMIOX-R | CCAACAACAGCCCATTGAGGAAGTC | ||
| qAtPGM-F | AT1G23190 | GCTACCTACGGTCGTCACTATTACACTCG | |
| qAtPGM-R | GTAACGGATTCCCTGGTGCTTCG | ||
| qAtUGP-F | AT5G17310 | GCCCAGCAAGGGAAAGACCG | |
| qAtUGP-R | CGATGGCACCCAAGTTGTCTGAAT | ||
| qAtUGD-F | AT5G15490 | GATTGCGGTTCTCGGCTTCG | |
| qAtUGD-R | TGCTTCACAGTGGTGGGGCTC | ||
| qAtUXS-F | AT5G59290 | TGAGAAGAATGAGGTGGTTGTTGC | |
| qAtUXS-R | GGTTGTATTTGTAGAAGATAGGAGAGGC | ||
| qAtGAE-F | AT3G23820 | GCGACGGCGGATACAAGCA | |
| qAtGAE-R | GATGGCGAAGATGAGGACGAGG | ||
| qAtUB5-F | AT3G62250 | CCTCGCCGACTACAACATCCAG | |
| qAtUB5-R | CTTCTTCCTCTTCTTAGCACCACCA |
图1 GbGlcAK蛋白特征A:ProtScale分析GbGlcAK肽链亲/疏水性分布曲线;B、C:TOPpred2和TMHMM 2.0工具对GbGlcAK氨基酸序列的跨膜区预测;D:GbGlcAK蛋白信号肽分析
Fig. 1 Characterization of GbGlcAK proteinA: Hydrophilic/hydrophobic distribution curve of the GbGlcAK peptide analyzed by ProtScale; B, C: Transmembrane region prediction of the GbGlcAK amino acid sequence by TOPpred2 and TMHMM 2.0; D: Signal peptide analysis of the GbGlcAK protein
图2 GbGlcAK系统进化分析注:Rc—蓖麻;Pt—毛果杨;Vv—葡萄;At—拟南芥;Gm—大豆;Os—水稻;Zm—玉米;Sb—高粱。
Fig.2 Evolutionary analysis of GbGlcAKNote: Rc—Ricinus communis; Pt—Populus trichocarpa; Vv—Vitis vinifera; At—Arabidopsis thaliana; Gm—Glycine max; Os—Oryza sativa; Zm—Zea mays; Sb—Sorghum bicolor.
图3 GbGlcAK的亚细胞定位A、B、C:蓝光、可见光叠加蓝光、可见光下的转pCam::GFP细胞;D、E、F:质壁分离后蓝光、可见光叠加蓝光、可见光下的转pCam::GbGlcAK-GFP细胞
Fig. 3 Subcellular localization of GbGlcAKA, B, C: Cell transfected with pCam::GFP under Blu-ray, visible light superimposed Blu-ray, and visible light; D, E, F: Cell transfected with pCam::GbGlcAK-GFP under Blu-ray, visible light superimposed Blu-ray, and visible light after plasma-wall separation
图4 转基因拟南芥叶表皮毛长度分析注:**表示在P<0.01水平差异显著(双尾t检验)。
Fig. 4 Analysis of leaf trichome length in transgenic A. thalianaNote:** indicates significant difference at the P<0.01 level (2-tailed t-test).
图5 转基因拟南芥下胚轴长度分析A、B:超表达GbGlcAK拟南芥与野生型拟南芥下胚轴长度比较;C:显微镜下观察超表达GbGlcAK拟南芥与野生型拟南芥叶下胚轴细胞。**表示P<0.01水平的显著性(双尾t检验);白色箭头所示细胞边界
Fig. 5 Analysis of hypocotyl length in transgenic A. thalianaA, B: Comparison of hypocotyl length between transgenic and wild-type Arabidopsis; C: Microscopic observation of hypocotyl cells; ** indicates significant difference at the P<0.01 level (2-tailed t-test);white arrows show the ends of cells
图6 转基因拟南芥根长分析注:**表示P<0.01水平的显著性(双尾t检验)。
Fig. 6 Analysis of root length in transgenic A. thalianaNote:** indicates significant difference at the P<0.01 level (2-tailed t-test).
图8 转基因拟南芥果胶含量注:*表示P<0.05水平的显著性(双尾t检验)。
Fig. 8 Pectin content in transgenic ArabidopsisNote:* indicates significant difference at P<0.05 level (2-tailed t-test).
| 1 | 喻树迅,魏晓文,赵新华.中国棉花生产与科技发展 [J].棉花学报, 2000, 12(6): 327-329. |
| YU S X, WEI X W, ZHAO X H. Cotton production and technical development in China [J]. Acta Gossypii Sin., 2000, 12(6): 327-329. | |
| 2 | MA Z, ZHANG Y, WU L, et al.. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement [J]. Nat. Genet., 2021, 53(9): 1385-1391. |
| 3 | BASRA A S, MALIK C P. Development of the cotton fiber [J]. Int. Rev. Cytol., 1984, 89(6): 65-113. |
| 4 | HAIGLER C H, BETANCUR L, STIFF M R, et al.. Cotton fiber: a powerful single-cell model for cell wall and cellulose research [J/OL]. Front. Plant Sci., 2012, 3: 104 [2021-11-09]. . |
| 5 | QIN Y M, ZHU Y X. How cotton fibers elongate: a tale of linear cell-growth mode [J]. Curr. Opin. Plant Biol., 2011, 14(1): 106-111. |
| 6 | SINGH B, AVCI U, EICHLER INWOOD S E, et al.. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles [J]. Plant Physiol., 2009, 150(2): 684-699. |
| 7 | ZABLACKIS E, JING H, MüLLER B, et al.. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves [J]. Plant Physiol., 1995, 107(4): 1129-1138. |
| 8 | KANTER U, USADEL B, GUERINEAU F, et al.. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides [J]. Planta, 2005, 221(2): 243-254. |
| 9 | LOEWUS F A, KELLY S, NEUFELD E F. Metabolism of myo-inositol in plants: conversion to pectin, hemicellulose, D-xylose, and sugar acids [J]. Proc. Natl. Acad. Sci. USA, 1962, 48(3): 421-425. |
| 10 | NEUFELD E F, FEINGOLD D S, HASSID W Z. Enzymic phosphorylation of D-glucuronic acid by extracts from seedlings of Phaseolus aureus [J]. Arch. Biochem. Biophys., 1959, 83(1): 96-100. |
| 11 | LEIBOWITZ M D, DICKINSON D B, LOEWUS F A, et al.. Partial purification and study of pollen glucuronokinase [J]. Arch. Biochem. Biophys., 1977, 179(2): 559-564. |
| 12 | PIESLINGER A M, HOEPFLINGER M C, TENHAKEN R. Nonradioactive enzyme measurement by high-performance liquid chromatography of partially purified sugar-1-kinase (glucuronokinase) from pollen of Lilium longiflorum [J]. Anal. Biochem., 2009, 388(2): 254-259. |
| 13 | PIESLINGER A M, HOEPFLINGER M C, TENHAKEN R. Cloning of Glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase pathway to nucleotide sugars [J]. J. Biol. Chem., 2010, 285(5): 2902-2910. |
| 14 | HOLDEN H M, THODEN J B, TIMSON D J, et al.. Galactokinase: structure, function and role in type Ⅱ galactosemia [J]. Cell. Mol. Life Sci., 2004, 61(19-20): 2471-2484. |
| 15 | XIAO W, HU S, ZHOU X, et al.. A glucuronokinase gene in Arabidopsis, AtGlcAK, is involved in drought tolerance by modulating sugar metabolism [J]. Plant Mol. Biol. Rep., 2017, 35(2): 1-14. |
| 16 | IVANOV KAVKOVA E, BLöCHL C, TENHAKEN R. The Myo-inositol pathway does not contribute to ascorbic acid synthesis [J]. Plant Biol., 2019, 21 (): 95-102. |
| 17 | LIU Z, WANG X, SUN Z, et al.. Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes [J/OL]. BMC Plant Biol., 2021, 21(1): 89[2022-03-07]. . |
| 18 | WANG Z, YANG Z, LI F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton [J]. Plant Biotechnol. J., 2019, 17(9): 1706-1722. |
| 19 | 吴立柱,王省芬,李喜焕,等.通用型植物表达载体pCamE的构建及功能验证[J].农业生物技术学报, 2014, 22(6): 661-671. |
| WU L Z, WANG X F, LI X H, et al.. Construction and function identification of universal plant expression vector pCamE [J]. J. Agric. Biotechnol., 2014, 22(6): 661-671. | |
| 20 | WANG M, TU L, YUAN D, et al.. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense [J]. Nat. Genet., 2019, 51(2): 224-229. |
| 21 | MISTRY J, CHUGURANSKY S, WILLIAMS L, et al.. Pfam: The protein families database in 2021 [J]. Nucleic Acids Res., 2021, 49(D1): D412-D419. |
| 22 | ARTIMO P, JONNALAGEDDA M, ARNOLD K, et al.. ExPASy: SIB bioinformatics resource portal [J]. Nucleic Acids Res., 2012, 40(W1): W597-W603. |
| 23 | CUTHBERTSON J M, DOYLE D A, SANSOM M S. Transmembrane helix prediction: a comparative evaluation and analysis [J]. Protein Eng. Des. Sel., 2005, 18(6): 295-308. |
| 24 | KROGH A, LARSSON B, GVON HEIJNE, et al.. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes [J]. J. Mol. Biol., 2001, 305(3): 567-580. |
| 25 | MÖLLER S, CRONING M D, APWEILER R. Evaluation of methods for the prediction of membrane spanning regions [J]. Bioinformatics, 2001, 17(7): 646-653. |
| 26 | ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SøNDERBY C K, et al.. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nat. Biotechnol., 2019, 37(4): 420-423. |
| 27 | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol. Biol. Evol., 2016, 33(7): 1870-1874. |
| 28 | YANG J, JI L, WANG X, et al.. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt [J]. Plant Cell Rep., 2015, 34(8): 1429-1441. |
| 29 | CHEN H, NELSON R S, SHERWOOD J L. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection [J]. Biotechniques, 1994, 16(4): 664-668, 670. |
| 30 | CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J., 1998, 16(6): 735-743. |
| 31 | An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121 [J]. New Phytol., 2017, 214(3): 1245-1259. |
| 32 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25(4): 402-408. |
| 33 | JEAN-MARC L, TRUNG-BIEU N, BRIGITTE C, et al.. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations [J]. BMC Plant Biol., 2005, 45(1): 123-140. |
| 34 | SERNA L, MARTIN C. Trichomes: different regulatory networks lead to convergent structures [J]. Trends Plant Sci., 2006, 11(6): 274-280. |
| 35 | GUAN X, YU N, SHANGGUAN X, et al.. Arabidopsis trichome research sheds light on cotton fiber development mechanisms [J]. Chin Sci. Bull., 2007, 52(13): 1734-1741. |
| 36 | GUAN X, PANG M, NAH G, et al.. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development [J/OL]. Nat. Commun., 2014, 5: 3050[2022-03-07]. . |
| 37 | MA Z, HE S, WANG X, et al.. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield [J]. Nat. Genet., 2018, 50(6): 803-813. |
| 38 | GENDREAU E, TRAAS J, DESNOS T, et al.. Cellular basis of hypocotyl growth in Arabidopsis thaliana [J]. Plant Physiol., 1997, 114(1): 295-305. |
| 39 | BORON A K, VISSENBERG K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion [J]. Plant Cell Rep., 2014, 33(5): 697-706. |
| 40 | 武耀廷,刘进元.棉纤维细胞发育过程中非纤维素多糖的生物合成 [J].棉花学报, 2004, 16(3): 189-192. |
| WU Y, LIU J. Noncellulosic polysaccharides biosynthesis in cotton fiber developing [J]. Cotton Sci., 2004, 16(3): 189-193. | |
| 41 | 喻树迅,朱玉贤,陈晓亚.棉花纤维发育生物学 [M].北京:科学出版社, 2016: 169. |
| 42 | KROH M, MIKI-HIROSIGE H, ROSEN W, et al.. Incorporation of label into pollen tube walls from myoinositol-labeled Lilium longiflorum pistils [J]. Plant Physiol., 1970, 45(1): 92-94. |
| 43 | SEITZ B, KLOS C, WURM M, et al.. Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns [J]. Plant J., 2000, 21(6): 537-546. |
| [1] | 贾浩, 王洪这, 孙正文, 谷淇深, 张冬梅, 王星懿, 张艳, 卢怀玉, 马峙英, 王省芬. 棉花VOZ基因家族鉴定及GhVOZ1耐盐功能研究[J]. 中国农业科技导报, 2025, 27(9): 58-68. |
| [2] | 陈宜新, 杨秀波, 田士军, 王聪, 白志英, 李存东, 张科. 陆地棉GhCOMT28对干旱胁迫的响应[J]. 中国农业科技导报, 2025, 27(4): 45-56. |
| [3] | 董志多, 付秋萍, 黄建, 祁通, 付彦博, 开赛尔·库尔班. 新疆棉花萌发期的耐盐能力分析[J]. 中国农业科技导报, 2025, 27(4): 57-67. |
| [4] | 彭梓程, 杜洪力, 王铭, 张凤华, 杨海昌. 丛枝菌根真菌调控盐碱胁迫下棉花生长及离子平衡的研究[J]. 中国农业科技导报, 2025, 27(2): 33-41. |
| [5] | 翁慧婷, 刘海洋, 郭惠明, 程红梅, 李君, 张超, 苏晓峰. 棉花抗黄萎病相关基因GhERF020功能的初步分析[J]. 中国农业科技导报, 2024, 26(9): 112-121. |
| [6] | 李紫琴, 王家强, 李贞, 邹德秋, 张小功, 罗霄玉, 柳维扬. 基于光谱指数的棉花叶片叶绿素密度估算研究[J]. 中国农业科技导报, 2024, 26(8): 103-111. |
| [7] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
| [8] | 秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199. |
| [9] | 李江博, 高文举, 运晓东, 赵杰银, 耿世伟, 韩春斌, 陈全家, 陈琴. 不同水分胁迫处理对陆地棉核心种质资源的影响[J]. 中国农业科技导报, 2024, 26(3): 26-39. |
| [10] | 李丽花, 孙正文, 柯会锋, 谷淇深, 吴立强, 张艳, 张桂寅, 王省芬. 陆地棉纤维强度KASP-SNP标记的开发及效应评价[J]. 中国农业科技导报, 2024, 26(2): 46-55. |
| [11] | 翟梦华, 孙明辉, 李雪瑞, 徐新龙, 高海洲, 张巨松. 不同株行距配置下缩节胺对棉花株型塑造的影响[J]. 中国农业科技导报, 2024, 26(12): 145-156. |
| [12] | 程珍, 牛建龙, 马玉婷, 柳维扬, 蒋学玮, 梁雪齐, 董红强. 1990—2020年南疆阿拉尔垦区棉花物候期的动态变化[J]. 中国农业科技导报, 2024, 26(10): 206-214. |
| [13] | 郑德有, 左东云, 王巧莲, 吕丽敏, 程海亮, 顾爱星, 宋国立. 氟节胺与杀菌剂复配防治棉花枯萎病的增效药剂筛选[J]. 中国农业科技导报, 2024, 26(1): 119-124. |
| [14] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
| [15] | 孙正冉, 张翠萍, 张晋丽, 吴昊, 刘秀艳, 王振凯, 杨玉珍, 贺道华. 喷施化学打顶剂对关中棉区棉花植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 167-177. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||