








中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (10): 90-98.DOI: 10.13304/j.nykjdb.2021.0770
郭文斌1(
), 李瑶1, 黄长华1, 杜建强1(
), 钱珊珠1, 何泽民1, 高晶晶2
收稿日期:2021-09-02
接受日期:2022-01-18
出版日期:2022-10-15
发布日期:2022-10-25
通讯作者:
杜建强
作者简介:郭文斌 E-mail:wenbingwb2000@ sina.com;
基金资助:
Wenbin GUO1(
), Yao LI1, Zhanghua HUANG1, Jianqiang DU1(
), Shanzhu QIAN1, Zemin HE1, Jingjing GAO2
Received:2021-09-02
Accepted:2022-01-18
Online:2022-10-15
Published:2022-10-25
Contact:
Jianqiang DU
摘要:
干燥箱是农业物料进行太阳能热风干燥的关键装置,其结构合理性直接影响物料干燥的品质和效率。为提升干燥效果,以太阳能热风干燥箱物理场分布的均匀程度为研究对象,采用试验和COMSOL数值模拟相结合的方法,对箱体内风速场、温度场的分布特点进行分析,并根据分析结果完成干燥箱结构优化。结果表明,COMSOL模拟仿真所得风速和温度的分布规律与试验结果一致,可用于准确模拟干燥箱内物理场。依托该模拟分析方法,提出了改变进风口位置、添加带孔挡流板、构建隔断式气室的优化设计方案,将干燥箱内风速场分布的不均匀系数降至了10%以下,有效保证了物料干燥的均匀性。上述结果可为太阳能热风干燥设备的结构改进提供参考。
中图分类号:
郭文斌, 李瑶, 黄长华, 杜建强, 钱珊珠, 何泽民, 高晶晶. 基于COMSOL的干燥箱物理场分析与结构优化[J]. 中国农业科技导报, 2022, 24(10): 90-98.
Wenbin GUO, Yao LI, Zhanghua HUANG, Jianqiang DU, Shanzhu QIAN, Zemin HE, Jingjing GAO. Physical Field Analysis and Structure Optimization of Solar Hot Air Dryer Based on COMSOL[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 90-98.
图1 太阳能热风干燥系统试验平台注:1—太阳;2—太阳能集热器;3—风管;4—鼓风机;5—干燥箱;6—多通道记录仪。
Fig. 1 Solar hot-air drying system test-bedNote: 1—Sun; 2—Solar collector; 3—Duct; 4—Blower; 5—Drying box; 6—Multichannel recorder.
| 对象 Object | 参数 Parameter |
|---|---|
| 进风口 Air inlet | 风速Wind velocity:5, 7, 10 m·s-1 |
| 出风口 Air outlet | 压力 Pressure: 0 Pa |
| 箱壁 Drying box wall | 无滑移 No slip |
| 进风口温度 Air inlet temperature | 312 K(39 ℃) |
表1 模型及边界条件参数设置
Table 1 Parameters of boundary conditions setting
| 对象 Object | 参数 Parameter |
|---|---|
| 进风口 Air inlet | 风速Wind velocity:5, 7, 10 m·s-1 |
| 出风口 Air outlet | 压力 Pressure: 0 Pa |
| 箱壁 Drying box wall | 无滑移 No slip |
| 进风口温度 Air inlet temperature | 312 K(39 ℃) |
| 进风口风速 Wind velocity/(m·s-1) | 层高 Layer height/mm | 平均风速 Average wind velocity/(m·s-1) | 风速场不均匀 系数M/% | 平均温度 Average temperature/℃ | 温度场不均匀 系数Tv/% |
|---|---|---|---|---|---|
| 5 | 150 | 0.54 | 80.68 | 38.60 | 1.29 |
| 450 | 0.76 | 79.70 | 38.55 | 1.30 | |
| 750 | 0.67 | 73.98 | 38.50 | 1.30 | |
| 7 | 150 | 0.77 | 78.10 | 35.29 | 0.72 |
| 450 | 0.85 | 63.31 | 35.60 | 1.40 | |
| 750 | 0.82 | 64.12 | 35.34 | 1.28 | |
| 10 | 150 | 0.87 | 86.28 | 37.53 | 0.63 |
| 450 | 0.75 | 86.32 | 37.50 | 0.56 | |
| 750 | 0.78 | 85.26 | 37.34 | 0.71 |
表2 干燥箱内各层风速、温度分布及其不均匀系数
Table 2 Distribution of wind velocity and temperature and their non-uniformity coefficients in different layers of drying box
| 进风口风速 Wind velocity/(m·s-1) | 层高 Layer height/mm | 平均风速 Average wind velocity/(m·s-1) | 风速场不均匀 系数M/% | 平均温度 Average temperature/℃ | 温度场不均匀 系数Tv/% |
|---|---|---|---|---|---|
| 5 | 150 | 0.54 | 80.68 | 38.60 | 1.29 |
| 450 | 0.76 | 79.70 | 38.55 | 1.30 | |
| 750 | 0.67 | 73.98 | 38.50 | 1.30 | |
| 7 | 150 | 0.77 | 78.10 | 35.29 | 0.72 |
| 450 | 0.85 | 63.31 | 35.60 | 1.40 | |
| 750 | 0.82 | 64.12 | 35.34 | 1.28 | |
| 10 | 150 | 0.87 | 86.28 | 37.53 | 0.63 |
| 450 | 0.75 | 86.32 | 37.50 | 0.56 | |
| 750 | 0.78 | 85.26 | 37.34 | 0.71 |
进风口风速 Air inlet wind velocity /(m·s-1) | M:不均匀系数Non-uniformity coefficient/% | ||
|---|---|---|---|
| 150 mm | 450 mm | 750 mm | |
| 5 | 77.7 | 61.4 | 66.6 |
| 7 | 85.0 | 56.1 | 55.9 |
| 10 | 84.2 | 55.8 | 55.7 |
表3 COMSOL环境下干燥箱各层风速场不均匀系数
Table 3 Non-uniformity coefficient of wind velocity field of drying box under the COMSOL model
进风口风速 Air inlet wind velocity /(m·s-1) | M:不均匀系数Non-uniformity coefficient/% | ||
|---|---|---|---|
| 150 mm | 450 mm | 750 mm | |
| 5 | 77.7 | 61.4 | 66.6 |
| 7 | 85.0 | 56.1 | 55.9 |
| 10 | 84.2 | 55.8 | 55.7 |
风速测点 编号 Serial number | 进风口风速 Air inlet wind velocity: 5 m·s-1 | 进风口风速 Air inlet wind velocity: 7 m·s-1 | 进风口风速 Air inlet wind velocity: 10 m·s-1 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
实测值 Measured value/(m·s-1) | 模拟值Simulation value/(m·s-1) | 误差 Error /% | 实测值 Measured value/(m·s-1) | 模拟值 Simulation value/(m·s-1) | 误差 Error /% | 实测值 Measured value/(m·s-1) | 模拟值 Simulation value/(m·s-1) | 误差 Error /% | |||
| 1 | 0.76 | 0.70 | 7.89 | 0.52 | 0.53 | 1.92 | 0.65 | 0.64 | 1.54 | ||
| 2 | 0.39 | 0.36 | 7.69 | 0.56 | 0.57 | 1.79 | 0.62 | 0.67 | 8.06 | ||
| 3 | 0.87 | 0.79 | 9.20 | 0.57 | 0.53 | 7.02 | 0.50 | 0.69 | 18.00 | ||
| 4 | 0.70 | 0.66 | 5.71 | 0.83 | 0.84 | 1.20 | 0.56 | 0.57 | 1.79 | ||
| 5 | 1.67 | 1.60 | 4.19 | 1.80 | 1.96 | 8.89 | 3.14 | 3.20 | 1.91 | ||
| 6 | 0.64 | 0.65 | 1.56 | 0.94 | 0.88 | 6.38 | 0.60 | 0.59 | 1.67 | ||
| 7 | 0.67 | 0.69 | 2.99 | 0.97 | 0.92 | 5.15 | 1.31 | 1.32 | 0.76 | ||
| 8 | 1.65 | 1.70 | 3.03 | 2.16 | 2.35 | 8.80 | 3.33 | 3.30 | 0.90 | ||
| 9 | 0.58 | 0.62 | 6.90 | 0.98 | 0.95 | 3.06 | 1.46 | 1.40 | 4.11 | ||
| 10 | 0.59 | 0.61 | 3.39 | 0.44 | 0.43 | 2.27 | 0.81 | 0.89 | 9.88 | ||
| 11 | 0.67 | 0.71 | 5.97 | 0.47 | 0.45 | 4.26 | 0.54 | 0.58 | 7.41 | ||
| 12 | 0.33 | 0.34 | 3.03 | 0.39 | 0.41 | 5.13 | 0.93 | 0.90 | 3.23 | ||
| 均值Mean | 0.84 | 0.84 | 4.09 | 1.00 | 1.02 | 5.02 | 1.41 | 1.42 | 4.94 | ||
表4 层高450 mm不同进风口风速下各测点风速实测值与模拟值对比
Table 4 Comparison of measured and simulated wind velocities at different measurement points at 450 mm layer
风速测点 编号 Serial number | 进风口风速 Air inlet wind velocity: 5 m·s-1 | 进风口风速 Air inlet wind velocity: 7 m·s-1 | 进风口风速 Air inlet wind velocity: 10 m·s-1 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
实测值 Measured value/(m·s-1) | 模拟值Simulation value/(m·s-1) | 误差 Error /% | 实测值 Measured value/(m·s-1) | 模拟值 Simulation value/(m·s-1) | 误差 Error /% | 实测值 Measured value/(m·s-1) | 模拟值 Simulation value/(m·s-1) | 误差 Error /% | |||
| 1 | 0.76 | 0.70 | 7.89 | 0.52 | 0.53 | 1.92 | 0.65 | 0.64 | 1.54 | ||
| 2 | 0.39 | 0.36 | 7.69 | 0.56 | 0.57 | 1.79 | 0.62 | 0.67 | 8.06 | ||
| 3 | 0.87 | 0.79 | 9.20 | 0.57 | 0.53 | 7.02 | 0.50 | 0.69 | 18.00 | ||
| 4 | 0.70 | 0.66 | 5.71 | 0.83 | 0.84 | 1.20 | 0.56 | 0.57 | 1.79 | ||
| 5 | 1.67 | 1.60 | 4.19 | 1.80 | 1.96 | 8.89 | 3.14 | 3.20 | 1.91 | ||
| 6 | 0.64 | 0.65 | 1.56 | 0.94 | 0.88 | 6.38 | 0.60 | 0.59 | 1.67 | ||
| 7 | 0.67 | 0.69 | 2.99 | 0.97 | 0.92 | 5.15 | 1.31 | 1.32 | 0.76 | ||
| 8 | 1.65 | 1.70 | 3.03 | 2.16 | 2.35 | 8.80 | 3.33 | 3.30 | 0.90 | ||
| 9 | 0.58 | 0.62 | 6.90 | 0.98 | 0.95 | 3.06 | 1.46 | 1.40 | 4.11 | ||
| 10 | 0.59 | 0.61 | 3.39 | 0.44 | 0.43 | 2.27 | 0.81 | 0.89 | 9.88 | ||
| 11 | 0.67 | 0.71 | 5.97 | 0.47 | 0.45 | 4.26 | 0.54 | 0.58 | 7.41 | ||
| 12 | 0.33 | 0.34 | 3.03 | 0.39 | 0.41 | 5.13 | 0.93 | 0.90 | 3.23 | ||
| 均值Mean | 0.84 | 0.84 | 4.09 | 1.00 | 1.02 | 5.02 | 1.41 | 1.42 | 4.94 | ||
图7 含隔断式气室的干燥箱注:1—进风口;2—出风口;3—箱体;4.带孔挡流板。
Fig. 7 Drying box with a partition-typeNote: 1—Air inlet; 2—Air outlet 3—Oven 4—Perforated baffle platechamber.
进风口风速 Air inlet wind velocity/(m·s-1) | M:分布不均匀系数Non-uniformity coefficient/% | |||
|---|---|---|---|---|
| 550 mm | 850 mm | 1 150 mm | 1 450 mm | |
| 5 | 39.33 | 13.88 | 9.36 | 8.53 |
| 7 | 39.31 | 13.96 | 9.38 | 8.41 |
| 10 | 39.32 | 14.05 | 9.46 | 8.32 |
表5 不同进风口风速下各层截面风速场分布不均匀系数
Table 5 Non-uniformity coefficients of wind velocity field under different inlet wind velocities
进风口风速 Air inlet wind velocity/(m·s-1) | M:分布不均匀系数Non-uniformity coefficient/% | |||
|---|---|---|---|---|
| 550 mm | 850 mm | 1 150 mm | 1 450 mm | |
| 5 | 39.33 | 13.88 | 9.36 | 8.53 |
| 7 | 39.31 | 13.96 | 9.38 | 8.41 |
| 10 | 39.32 | 14.05 | 9.46 | 8.32 |
| 1 | IRASTEH G, SAIDUR R, RAHMAN S M A, et al.. A review on development of solar drying applications [J]. Renew.Sustain Energy Rev., 2014,31:133-148. |
| 2 | 钱珊珠,王春光,刘贵林,等.牧草固定深层太阳能干燥的试验[J].农业机械学报,2008,39(12):97-101. |
| QIAN S Z, WANG C G, LIU G L, et al.. Experiment on temperature and moisture content of forage in deep bed solar drying process [J]. Trans. Chin. Soc. Agric. Mach., 2008, 39(12):97-101. | |
| 3 | FUDHOLI A, SOPIAN K, RUSLAN M H, et al.. Review of solar dryers for agricultural and marine products [J].Renew. Sustain Energy Rev., 2010,14(1):1-30. |
| 4 | SHALABY S M, BEK M A. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium [J]. Energy Conv. Manage., 2014, 83:1-8. |
| 5 | DARABI H, ZOMORODIAN A, AKBARI M H, et al.. Design a cabinet dryer with two geometric configurations using CFD [J]. J. Food Sci. Technol., 2015, 52(1):359-366. |
| 6 | VIJAYAN S, ARJUNAN T V, KUMAR A. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer [J]. Innov. Food Sci. Emerg. Technol., 2016, 36:59-67. |
| 7 | NABNEAN S, JANJAI S, THEPA S, et al.. Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes [J]. Renew. Energy,2016,94:147-156. |
| 8 | Singh P L. Silk cocoon drying in forced convection type solar dryer [J]. Appl. Energy,2011, 88(5):1720-1726. |
| 9 | 王健,董继先,王栋,等.果蔬干燥箱气流分配室的数值模拟与结构优化[J]. 陕西科技大学学报, 2019, 37(1):128-134. |
| WANG J, DONG J X, WANG D, et al.. Numerical simulation and structure optimization of air distribution chamber in fruit and vegetable drying box [J]. J. Shaanxi Univ. Sci.,2019,37(1):128-134. | |
| 10 | 王少丹.苜蓿太阳能干燥箱结构对气流分布影响的研究[D].呼和浩特:内蒙古农业大学,2018:26-33. |
| WANG S D. Study on the influence of solar drying box structure on air distribution in alfalfa [D]. Hohhot: Inner Mongolia Agricultural University,2018:26-33. | |
| 11 | 张鹏,樊啟洲,黄宇,等.小型太阳能热风油菜籽循环干燥设备研究[J].中国农业科技导报,2018, 20(2):72-79. |
| ZHANG P, FAN Q Z, HUANG Y, et al.. Experimental research on a small rapeseed circulating dryer machine by solar hot air [J]. J. Agric. Sci. Technol., 2018,20(2):72-79. | |
| 12 | 殷存真,廖增强.太阳能复合干燥三七技术[J].云南农业,2016(7):86-87. |
| YIN C Z, LIAO Z Q. Solar composite dry notoginseng technique [J]. Yunnan Agric., 2016(7):86-87. | |
| 13 | 戴素兰.一种太阳能作为辅助热源的农产品干燥装置:CN2018 21056004.1 [P].2019-04-02. |
| 14 | 黄继杰,赵小勇,章炯.太阳能干燥箱中风速场分析[J].机械工程师,2019, 341(11):50-52, 59. |
| HUANG J J, ZHAO X Y, ZHANG J. Analysis of wind speed field in solar drying oven [J]. Mechan. Eng., 2019, 341(11):50-52, 59. | |
| 15 | 米争鹏,谭思超,李兴,等.棒束通道温度场可视化实验研究[J].原子能科学技术,2018,52(5):847-854. |
| MI Z P, TAN S C, LI X, et al.. Visual experimental investigation of temperature field inside rod bundle [J]. Atom. Energy Sci. Tech.,2018,52(5):847-854. | |
| 16 | 赵朋飞,张小辉,张汉,等.非等温液-液对置撞击面温度分布均匀性[J].化工进展,2019,38(12):5297-5305. |
| ZHAO P F, ZHANG X H, ZHANG H, et al.. Impact surface temperature distribution uniformity of non-isothermalliquid-liquid opposite impinging process [J]. Chem. Ind. Engin. Progr.,2019,38(12):5297-5305. | |
| 17 | 陈竹筠.玉米顺流干燥箱体内流场的数值分析与结构优化[D].大庆:黑龙江八一农垦大学,2019:24-25. |
| CHEN Z Y. Fluid analysis and structure optimization of parallel flow field in corn drying section [D]. Daqing: Heilongjiang Bayi Agricultural University,2019:24-25. |
| [1] | 代祥, 宋海潮, 苏川. 自走式大蒜正芽播种施肥机设计与试验[J]. 中国农业科技导报, 2025, 27(9): 131-144. |
| [2] | 胡华鹏, 张绪坤, 谌佳君, 潘杨杨, 杨佩林, 鲁志. 茶渣双轴搅拌干燥机结构优化及含水率模拟分析[J]. 中国农业科技导报, 2025, 27(4): 120-132. |
| [3] | 陈子民, 莫江婷, 陈广生, 郭小璇, 朱贤文. 基于Fluent的顶风式热泵干燥箱气流场分析及优化[J]. 中国农业科技导报, 2024, 26(10): 135-144. |
| [4] | 石婷婷, 廖宇兰, 彭绪友, 袁成宇. 单行直插式木薯种植机的设计与优化[J]. 中国农业科技导报, 2022, 24(6): 115-122. |
| [5] | 钟汝能, 郑勤红, 姚斌, 向泰. 谷物颗粒物料等效介电特性的数值模拟#br#[J]. 中国农业科技导报, 2021, 23(9): 103-111. |
| [6] | 周书娴, 石毅新, 蒋蘋. 基于CFD两级注入式射流混合器设计与试验研究[J]. 中国农业科技导报, 2021, 23(6): 86-96. |
| [7] | 杨涛涛, 周星宇, 陆晓丽, 钱善华, 俞经虎. 基于正交试验的制粒机成型仿真及结构参数优化[J]. 中国农业科技导报, 2021, 23(10): 90-96. |
| [8] | 肖瑶1,2,吴明亮1,2*,张锐1,Mangeh III Fondzenyuy Cedric1. 油菜旋风式烘干机干燥筒内气力流场特性仿真分析[J]. 中国农业科技导报, 2019, 21(9): 77-83. |
| [9] | 宋海潮1,2,徐幼林2*,郑加强2,代祥2. 旋动射流混药器螺旋弯曲收缩管螺距和分流器位置的模拟优化分析[J]. 中国农业科技导报, 2019, 21(9): 84-89. |
| [10] | 周丹1,2,高云1,3*,雷明刚3,4,黎煊1,3. 冬季仔猪舍内二氧化碳浓度的数值模拟研究[J]. 中国农业科技导报, 2019, 21(8): 90-98. |
| [11] | 田昆鹏,张彬*,李显旺,黄继承,沈成. 果蔬皮渣颗粒成型机模孔结构设计及模拟优化研究[J]. 中国农业科技导报, 2018, 20(6): 62-68. |
| [12] | 谢超1,刘大为1,2,李旭1,2,谢方平1,2*,王勋威1,谢锦帆1. 小型水稻联合收割机旋风分离清选装置的结构优化与试验[J]. 中国农业科技导报, 2018, 20(5): 54-63. |
| [13] | 温晓霞 廖允成 等. 宁南旱作农区种植业结构调整研究[J]. , 2002, 4(6): 28-31. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||