Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (10): 42-50.DOI: 10.13304/j.nykjdb.2024.0276
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Ge DING(), Shuyu LI, Jie XIONG, Laiqiang SONG, Xiaoxiao ZHENG, Bingchao ZHANG, Yuwen WANG, Lunlin CHEN(
)
Received:
2024-04-06
Accepted:
2025-02-26
Online:
2025-10-15
Published:
2025-10-15
Contact:
Lunlin CHEN
丁戈(), 李书宇, 熊洁, 宋来强, 郑潇潇, 张炳超, 王雨文, 陈伦林(
)
通讯作者:
陈伦林
作者简介:
丁戈 E-mail : gedingjxaas@163.com;
基金资助:
CLC Number:
Ge DING, Shuyu LI, Jie XIONG, Laiqiang SONG, Xiaoxiao ZHENG, Bingchao ZHANG, Yuwen WANG, Lunlin CHEN. Analysis of Agronomic Traits and Variety Breeding of Rapeseed with Short Duration[J]. Journal of Agricultural Science and Technology, 2025, 27(10): 42-50.
丁戈, 李书宇, 熊洁, 宋来强, 郑潇潇, 张炳超, 王雨文, 陈伦林. 短生育期油菜农艺性状分析及品种选育[J]. 中国农业科技导报, 2025, 27(10): 42-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2024.0276
编号 Number | 名称 Name | 类别 Category | 编号 Number | 名称 Name | 类别 Category | |
---|---|---|---|---|---|---|
1 | 283B | 自交系Inbred | 25 | 19A1861×283B | 杂交种Hybrid | |
2 | 69-001 | 自交系Inbred | 26 | 19A1990×283B | 杂交种Hybrid | |
3 | 4K003 | 自交系Inbred | 27 | 69-026×238B | 杂交种Hybrid | |
4 | 5K038 | 自交系Inbred | 28 | 75169×283B | 杂交种Hybrid | |
5 | 5K053 | 自交系Inbred | 29 | 75529×283B | 杂交种Hybrid | |
6 | 6K205 | 自交系Inbred | 30 | 4K003×52R | 杂交种Hybrid | |
7 | 9Y005 | 自交系Inbred | 31 | 5K008×52R | 杂交种Hybrid | |
8 | 17A548 | 自交系Inbred | 32 | 5K034×52R | 杂交种Hybrid | |
9 | 赣油杂8号 Ganyouza 8 | 杂交种Hybrid | 33 | 5K053×52R | 杂交种Hybrid | |
10 | 赣油杂906 Ganyouza 906 | 杂交种Hybrid | 34 | 6K026×52R | 杂交种Hybrid | |
11 | 4K003×283B | 杂交种Hybrid | 35 | 6K160×52R | 杂交种Hybrid | |
12 | 4K045×283B | 杂交种Hybrid | 36 | 17A548×52R | 杂交种Hybrid | |
13 | 4K069×283B | 杂交种Hybrid | 37 | 17C558×52R | 杂交种Hybrid | |
14 | 5K001×283B | 杂交种Hybrid | 38 | 19A1861×52R | 杂交种Hybrid | |
15 | 5K002×283B | 杂交种Hybrid | 39 | 19A2001×52R | 杂交种hybrid | |
16 | 5K008×238B | 杂交种Hybrid | 40 | 190891×52R | 杂交种Hybrid | |
17 | 5K020×283B | 杂交种Hybrid | 41 | 4K003×69-001 | 杂交种Hybrid | |
18 | 5K024×283B | 杂交种Hybrid | 42 | 4K045×69-001 | 杂交种Hybrid | |
19 | 5K039×283B | 杂交种Hybrid | 43 | 4K069×69-001 | 杂交种Hybrid | |
20 | 5K060×283B | 杂交种Hybrid | 44 | 6K035×69-001 | 杂交种Hybrid | |
21 | 6K075×283B | 杂交种Hybrid | 45 | 850736×69-001 | 杂交种Hybrid | |
22 | 6K168×283B | 杂交种Hybrid | 46 | 4K033×N5353 | 杂交种Hybrid | |
23 | 9Y013×283B | 杂交种Hybrid | 47 | 4K045×N5353 | 杂交种Hybrid | |
24 | 17A548×283B | 杂交种Hybrid | 48 | 5K025×N5353 | 杂交种Hybrid |
Table 1 Source of 48 rapeseed materials
编号 Number | 名称 Name | 类别 Category | 编号 Number | 名称 Name | 类别 Category | |
---|---|---|---|---|---|---|
1 | 283B | 自交系Inbred | 25 | 19A1861×283B | 杂交种Hybrid | |
2 | 69-001 | 自交系Inbred | 26 | 19A1990×283B | 杂交种Hybrid | |
3 | 4K003 | 自交系Inbred | 27 | 69-026×238B | 杂交种Hybrid | |
4 | 5K038 | 自交系Inbred | 28 | 75169×283B | 杂交种Hybrid | |
5 | 5K053 | 自交系Inbred | 29 | 75529×283B | 杂交种Hybrid | |
6 | 6K205 | 自交系Inbred | 30 | 4K003×52R | 杂交种Hybrid | |
7 | 9Y005 | 自交系Inbred | 31 | 5K008×52R | 杂交种Hybrid | |
8 | 17A548 | 自交系Inbred | 32 | 5K034×52R | 杂交种Hybrid | |
9 | 赣油杂8号 Ganyouza 8 | 杂交种Hybrid | 33 | 5K053×52R | 杂交种Hybrid | |
10 | 赣油杂906 Ganyouza 906 | 杂交种Hybrid | 34 | 6K026×52R | 杂交种Hybrid | |
11 | 4K003×283B | 杂交种Hybrid | 35 | 6K160×52R | 杂交种Hybrid | |
12 | 4K045×283B | 杂交种Hybrid | 36 | 17A548×52R | 杂交种Hybrid | |
13 | 4K069×283B | 杂交种Hybrid | 37 | 17C558×52R | 杂交种Hybrid | |
14 | 5K001×283B | 杂交种Hybrid | 38 | 19A1861×52R | 杂交种Hybrid | |
15 | 5K002×283B | 杂交种Hybrid | 39 | 19A2001×52R | 杂交种hybrid | |
16 | 5K008×238B | 杂交种Hybrid | 40 | 190891×52R | 杂交种Hybrid | |
17 | 5K020×283B | 杂交种Hybrid | 41 | 4K003×69-001 | 杂交种Hybrid | |
18 | 5K024×283B | 杂交种Hybrid | 42 | 4K045×69-001 | 杂交种Hybrid | |
19 | 5K039×283B | 杂交种Hybrid | 43 | 4K069×69-001 | 杂交种Hybrid | |
20 | 5K060×283B | 杂交种Hybrid | 44 | 6K035×69-001 | 杂交种Hybrid | |
21 | 6K075×283B | 杂交种Hybrid | 45 | 850736×69-001 | 杂交种Hybrid | |
22 | 6K168×283B | 杂交种Hybrid | 46 | 4K033×N5353 | 杂交种Hybrid | |
23 | 9Y013×283B | 杂交种Hybrid | 47 | 4K045×N5353 | 杂交种Hybrid | |
24 | 17A548×283B | 杂交种Hybrid | 48 | 5K025×N5353 | 杂交种Hybrid |
性状 Trait | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 SD | 变异系数 CV/% | 香浓多样性指数 H' |
---|---|---|---|---|---|---|
生育期 GP/d | 177.0 | 187.0 | 180.4 | 2.04 | 1.13 | 1.782 |
营养期 VGP/d | 85.0 | 126.0 | 107.9 | 10.27 | 9.53 | 1.993 |
花期 FP/d | 19.0 | 55.0 | 35.6 | 10.35 | 29.08 | 1.928 |
角果期 PGP/d | 30.0 | 43.0 | 37.0 | 2.88 | 7.79 | 2.045 |
株高 PH/cm | 128.7 | 189.0 | 167.9 | 12.53 | 7.46 | 1.997 |
有效分枝高度 BH/cm | 39.2 | 104.8 | 78.7 | 14.44 | 18.35 | 2.031 |
一次分枝数 BN | 5.0 | 8.4 | 6.0 | 0.75 | 12.50 | 1.946 |
单株有效角果数 PN | 91.8 | 187.9 | 146.2 | 28.45 | 19.46 | 1.873 |
每果粒数 SN | 16.4 | 26.4 | 19.3 | 2.29 | 11.86 | 1.684 |
千粒重 TSW/g | 3.3 | 5.7 | 4.4 | 0.57 | 12.84 | 2.054 |
单株产量 PY/g | 6.2 | 14.1 | 10.6 | 1.93 | 18.21 | 1.764 |
平均值Mean | 13.47 | 1.918 |
Table 2 Phenotypic value variation of traits of 48 rapeseed materials
性状 Trait | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 SD | 变异系数 CV/% | 香浓多样性指数 H' |
---|---|---|---|---|---|---|
生育期 GP/d | 177.0 | 187.0 | 180.4 | 2.04 | 1.13 | 1.782 |
营养期 VGP/d | 85.0 | 126.0 | 107.9 | 10.27 | 9.53 | 1.993 |
花期 FP/d | 19.0 | 55.0 | 35.6 | 10.35 | 29.08 | 1.928 |
角果期 PGP/d | 30.0 | 43.0 | 37.0 | 2.88 | 7.79 | 2.045 |
株高 PH/cm | 128.7 | 189.0 | 167.9 | 12.53 | 7.46 | 1.997 |
有效分枝高度 BH/cm | 39.2 | 104.8 | 78.7 | 14.44 | 18.35 | 2.031 |
一次分枝数 BN | 5.0 | 8.4 | 6.0 | 0.75 | 12.50 | 1.946 |
单株有效角果数 PN | 91.8 | 187.9 | 146.2 | 28.45 | 19.46 | 1.873 |
每果粒数 SN | 16.4 | 26.4 | 19.3 | 2.29 | 11.86 | 1.684 |
千粒重 TSW/g | 3.3 | 5.7 | 4.4 | 0.57 | 12.84 | 2.054 |
单株产量 PY/g | 6.2 | 14.1 | 10.6 | 1.93 | 18.21 | 1.764 |
平均值Mean | 13.47 | 1.918 |
指标 Index | 生育期 GP | 营养期 VGP | 花期 FP | 角果期 PGP | 株高 PH | 有效分枝高度 BH | 一次分枝数 BN | 单株有效角果数 PN | 每果粒数 SN | 千粒重 TSW |
---|---|---|---|---|---|---|---|---|---|---|
营养期 VGP | 0.212 | |||||||||
花期 FP | -0.144 | -0.967** | ||||||||
角果期 PGP | 0.470** | 0.059 | -0.244 | |||||||
株高 PH | -0.313* | -0.154 | 0.061 | 0.109 | ||||||
有效分枝高度 BH | -0.124 | -0.143 | 0.094 | 0.085 | 0.553** | |||||
一次分枝数 BN | -0.009 | -0.103 | 0.105 | -0.017 | -0.114 | -0.504** | ||||
单株有效角果数 PN | 0.211 | 0.274 | -0.279 | 0.176 | -0.150 | -0.305* | 0.150 | |||
每果粒数 SN | 0.463** | 0.305* | -0.277 | 0.235 | -0.057 | -0.173 | 0.028 | 0.209 | ||
千粒重 TSW | 0.090 | 0.467** | -0.576** | 0.467** | 0.235 | 0.058 | -0.088 | -0.033 | 0.218 | |
单株产量 PY | 0.283 | 0.521** | -0.549** | 0.317* | -0.068 | -0.212 | 0.055 | 0.795** | 0.512** | 0.355* |
Table 3 Correlation analysis of different phenotypic traits of 48 rapeseed materials
指标 Index | 生育期 GP | 营养期 VGP | 花期 FP | 角果期 PGP | 株高 PH | 有效分枝高度 BH | 一次分枝数 BN | 单株有效角果数 PN | 每果粒数 SN | 千粒重 TSW |
---|---|---|---|---|---|---|---|---|---|---|
营养期 VGP | 0.212 | |||||||||
花期 FP | -0.144 | -0.967** | ||||||||
角果期 PGP | 0.470** | 0.059 | -0.244 | |||||||
株高 PH | -0.313* | -0.154 | 0.061 | 0.109 | ||||||
有效分枝高度 BH | -0.124 | -0.143 | 0.094 | 0.085 | 0.553** | |||||
一次分枝数 BN | -0.009 | -0.103 | 0.105 | -0.017 | -0.114 | -0.504** | ||||
单株有效角果数 PN | 0.211 | 0.274 | -0.279 | 0.176 | -0.150 | -0.305* | 0.150 | |||
每果粒数 SN | 0.463** | 0.305* | -0.277 | 0.235 | -0.057 | -0.173 | 0.028 | 0.209 | ||
千粒重 TSW | 0.090 | 0.467** | -0.576** | 0.467** | 0.235 | 0.058 | -0.088 | -0.033 | 0.218 | |
单株产量 PY | 0.283 | 0.521** | -0.549** | 0.317* | -0.068 | -0.212 | 0.055 | 0.795** | 0.512** | 0.355* |
性状 Trait | 非标准化系数 Unstandardized coefficient | 标准化系数 Standardized coefficient | P值 P value | 方差膨胀因子 VIF | |
---|---|---|---|---|---|
B值 B value | 标准误差Standard error | Beta值 Beta value | |||
常数 Constant | -6.144 | 1.246 | 0.000** | ||
单株有效角果数 PN | 0.050 | 0.004 | 0.746 | 0.000** | 1.053 |
每果粒数 SN | 0.241 | 0.051 | 0.287 | 0.000** | 1.104 |
千粒重 TSW | 1.068 | 0.201 | 0.317 | 0.009** | 1.057 |
决定系数 Coefficient of determination | 0.852 | ||||
校正决定系数 Adjusted coefficient of determination | 0.842 | ||||
F分布值 F-distribution value | F=84.558, P=0.000** | ||||
德宾-沃森检验值 Durbin-Waston test value | 1.555 |
Table 4 Stepwise regression analysis model for yield traits of 48 rapeseed materials
性状 Trait | 非标准化系数 Unstandardized coefficient | 标准化系数 Standardized coefficient | P值 P value | 方差膨胀因子 VIF | |
---|---|---|---|---|---|
B值 B value | 标准误差Standard error | Beta值 Beta value | |||
常数 Constant | -6.144 | 1.246 | 0.000** | ||
单株有效角果数 PN | 0.050 | 0.004 | 0.746 | 0.000** | 1.053 |
每果粒数 SN | 0.241 | 0.051 | 0.287 | 0.000** | 1.104 |
千粒重 TSW | 1.068 | 0.201 | 0.317 | 0.009** | 1.057 |
决定系数 Coefficient of determination | 0.852 | ||||
校正决定系数 Adjusted coefficient of determination | 0.842 | ||||
F分布值 F-distribution value | F=84.558, P=0.000** | ||||
德宾-沃森检验值 Durbin-Waston test value | 1.555 |
Fig. 1 Analysis of main growth period of 48 rapeseed materialsA:Monthly distribution of 48 rapeseed varieties of the initial flowering period, final flowering period and maturation stage; B: Relationship between the initial flowering period and flowering period of 48 rapeseed materials
主成分 PC | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
---|---|---|---|
1 | 3.588 74 | 32.62 | 32.62 |
2 | 2.072 25 | 18.84 | 51.46 |
3 | 1.393 18 | 12.67 | 64.13 |
4 | 1.123 19 | 10.21 | 74.34 |
5 | 1.027 71 | 9.34 | 83.68 |
6 | 0.746 72 | 6.79 | 90.47 |
7 | 0.469 99 | 4.27 | 94.74 |
8 | 0.257 72 | 2.34 | 97.09 |
9 | 0.250 51 | 2.28 | 99.36 |
10 | 0.070 00 | 0.64 | 100.00 |
11 | 0.000 00 | 0.00 | 100.00 |
Table 5 Principal component eigenvalue and variance contribution rate of phenotypic traits of 48 rapeseed materials
主成分 PC | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
---|---|---|---|
1 | 3.588 74 | 32.62 | 32.62 |
2 | 2.072 25 | 18.84 | 51.46 |
3 | 1.393 18 | 12.67 | 64.13 |
4 | 1.123 19 | 10.21 | 74.34 |
5 | 1.027 71 | 9.34 | 83.68 |
6 | 0.746 72 | 6.79 | 90.47 |
7 | 0.469 99 | 4.27 | 94.74 |
8 | 0.257 72 | 2.34 | 97.09 |
9 | 0.250 51 | 2.28 | 99.36 |
10 | 0.070 00 | 0.64 | 100.00 |
11 | 0.000 00 | 0.00 | 100.00 |
特征向量 Eigenvector | 特征值 Eigenvalue | |
---|---|---|
主成分1 PC 1 | 主成分2 PC 2 | |
生育期 GP | 0.262 67 | -0.116 96 |
营养期 VGP | 0.413 56 | 0.120 00 |
花期 FP | -0.427 11 | -0.195 76 |
角果期 PGP | 0.245 43 | 0.192 32 |
株高 PH | -0.100 43 | 0.472 92 |
有效分枝高度 BH | -0.156 10 | 0.543 11 |
一次分枝数 BN | 0.019 58 | -0.408 36 |
单株有效角果数 PN | 0.312 19 | -0.252 07 |
每果粒数 SN | 0.314 88 | -0.047 83 |
千粒重 TSW | 0.293 67 | 0.376 74 |
单株产量 PY | 0.446 79 | -0.058 93 |
Table 6 Principal component eigenvalues of eigenvectors of phenotypic traits of 48 rapeseed materials
特征向量 Eigenvector | 特征值 Eigenvalue | |
---|---|---|
主成分1 PC 1 | 主成分2 PC 2 | |
生育期 GP | 0.262 67 | -0.116 96 |
营养期 VGP | 0.413 56 | 0.120 00 |
花期 FP | -0.427 11 | -0.195 76 |
角果期 PGP | 0.245 43 | 0.192 32 |
株高 PH | -0.100 43 | 0.472 92 |
有效分枝高度 BH | -0.156 10 | 0.543 11 |
一次分枝数 BN | 0.019 58 | -0.408 36 |
单株有效角果数 PN | 0.312 19 | -0.252 07 |
每果粒数 SN | 0.314 88 | -0.047 83 |
千粒重 TSW | 0.293 67 | 0.376 74 |
单株产量 PY | 0.446 79 | -0.058 93 |
Fig. 2 PC analysis biplot of phenotypic traits of 48 rapeseed materialsNote: Dark cyan round dots represent rapeseed varieties. Blue arrows represent eigenvector. The black lower and left axes of the PC analysis biplot represent the PC1 and PC2 of the rapeseed materials, and the orange upper and right axes represent the PC1 and PC2 of the eigenvectors.
[1] | 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议[J]. 中国油料作物学报, 2014, 36(3): 414-421. |
WANG H Z, YIN Y. Analysis and strategy for oil crop industry in China [J]. Chin. J. Oil Crop Sci., 2014, 36(3): 414-421. | |
[2] | 卢坤, 王腾岳, 徐新福, 等. 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析[J]. 作物学报, 2016, 42(3): 344-352. |
LU K, WANG T Y, XU X F, et al.. Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus [J]. Acta Agron. Sin., 2016, 42(3): 344-352. | |
[3] | 殷艳, 尹亮, 张学昆, 等. 我国油菜产业高质量发展现状和对策[J]. 中国农业科技导报, 2021, 23(8): 1-7. |
YIN Y, YIN L, ZHANG X K, et al.. Status and countermeasure of the high-quality development of rapeseed industry in China [J]. J. Agric. Sci. Technol., 2021, 23(8): 1-7. | |
[4] | 蒯婕, 王积军, 左青松, 等. 长江流域直播油菜密植效应及其机理研究进展[J]. 中国农业科学, 2018, 51(24): 4625-4632. |
KUAI J, WANG J J, ZUO Q S, et al.. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China [J]. Sci. Agric. Sin., 2018, 51(24): 4625-4632. | |
[5] | 张尧锋, 余华胜, 曾孝元, 等. 早熟甘蓝型油菜研究进展及其应用[J]. 植物遗传资源学报, 2019, 20(2): 258-266. |
ZHANG Y F, YU H S, ZENG X Y, et al.. Progress and application of early maturity in rapeseed (Brassica napus L.) [J]. J. Plant Genet. Resour., 2019, 20(2): 258-266. | |
[6] | 李荣德, 何平, 罗莉霞, 等. “稻-稻-油”生产模式下短生育期冬油菜品种选育与推广现状分析[J]. 中国农业科学, 2024, 57 (5): 846-854. |
LI R D, HE P, LUO L X, et al.. Current situation of breeding and popularization of short-growth-period winter rapeseed varieties for rice-rice-rapeseed mode [J]. Sci. Agric. Sin., 2024, 57(5): 846-854. | |
[7] | 伍晓明, 陈碧云, 陆光远, 等. 油菜种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2007: 10-25. |
[8] | 钱玉源, 刘祎, 崔淑芳, 等. 基于表型的棉花种质资源遗传多样性分析及核心种质的抽提[J]. 华北农学报, 2019, 34(): 29-35. |
QIAN Y Y, LIU Y, CUI S F, et al.. Analysis of genetic diversity of cotton germplasm resources and extraction of core germplasm based on phenotypic traits [J]. Acta Agric. Boreali-Sin., 2019, 34(S1): 29-35. | |
[9] | 刘进, 勒思, 周慧颖, 等. 江西省水稻地方品种资源的收集与鉴定评价[J]. 植物遗传资源学报, 2023, 24(5): 1267-1276. |
LIU J, LE S, ZHOU H Y, et al.. Collection, identification and evaluation of rice landraces in Jiangxi province, China [J]. J. Plant Genet. Resour., 2023, 24(5): 1267-1276. | |
[10] | 郑本川, 崔成, 张锦芳, 等. 甘蓝型油菜育种亲本单株产量与农艺性状相关性分析[J]. 植物遗传资源学报, 2019, 20(1): 113-121. |
ZHENG B C, CUI C, ZHANG J F, et al.. Correlation analysis of yield per plant and agronomic traits in breeding lines in Brassica napus L. [J]. J. Plant Genet. Resour., 2019, 20(1): 113-121. | |
[11] | 张格格, 柳海东, 杜德志. 甘蓝型油菜恢复系的群体结构解析及核心种质构建[J]. 中国油料作物学报, 2023, 45(2): 231-239. |
ZHANG G G, LIU H D, DU D Z. Population structure analysis and core germplasm construction of Brassica napus restorer lines [J]. Chin. J. Oil Crop Sci., 2023, 45(2): 231-239. | |
[12] | 官春云, 靳芙蓉, 董国云, 等. 冬油菜早熟品种生长发育特性研究[J]. 中国工程科学, 2012, 14(11): 4-12. |
[13] | 李书宇, 黄杨, 熊洁, 等. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
LI S Y, HUANG Y, XIONG J, et al.. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agron. Sin., 2021, 47(4): 626-637. | |
[14] | 熊洁, 丁戈, 邹小云, 等. 油菜花期的基因型差异与分类、鉴定[J]. 江西农业学报, 2017, 29(11): 13-16. |
XIONG J, DING G, ZOU X Y, et al.. Genotypic difference, classification and identification of flowering period of oilseed rape [J]. Acta Agric. Jiangxi, 2017, 29(11): 13-16. | |
[15] | 左萃宸, 曾涛, 何永强, 等. 长江中游南部油菜产区低产原因及育种对策[J]. 中国油料作物学报, 2024, 46(5): 969-976. |
ZUO C C, ZENG T, HE Y Q, et al.. Causes of low yield and breeding countermeasures in rapeseed producing areas in the middle reaches of the Yangtze River [J]. Chin. J. Oil Crop Sci., 2024, 46(5): 969-976. | |
[16] | 李孟琼, 周岩, 罗丹, 等. 耐迟播短生育期油菜品种的鉴定与筛选[J]. 中国油料作物学报, 2023, 45(6): 1238-1246. |
LI M Q, ZHOU Y, LUO D, et al.. Identification and selection of late sowing tolerant rapeseed (Brassica napus L.) accessions [J]. Chin. J. Oil Crop Sci., 2023, 45(6): 1238-1246. | |
[17] | 赵培森, 张芳, 苏海英, 等. 我国三熟制早熟油菜品种产量构成特点及育种对策[J]. 中国油料作物学报, 2023, 45(1): 23-29. |
ZHAO P S, ZHANG F, SU H Y, et al.. Analysis of influencing factors on yield of early and middle maturity rapeseed varieties in triple cropping area [J]. Chin. J. Oil Crop Sci., 2023, 45(1): 23-29. | |
[18] | 李云娟, 钟丽, 张宗急, 等. 广西三熟制地区早熟油菜产量与其构成的主要性状关联度分析[J]. 种子科技, 2023, 41(6): 37-39, 43. |
[19] | 邹小云, 熊信果, 黄杨. 早熟、耐迟播油菜新品种赣油105的选育[J]. 作物研究, 2021, 35(1): 84-87. |
ZOU X Y, XIONG X G, HUANG Y. Breeding of a new rapeseed variety Ganyou 105 with early maturity and late sowing tolerance [J]. Crop Res., 2021, 35(1): 84-87. |
[1] | Min SHI, Zhenyan XU, Jian LUO. Study on Identification of Future Industries Based on Interdisciplinary [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 10-19. |
[2] | Mengzhen HUANG, Hao LI, Huanjun HU, Zipeng LI, Zhongyin SHENG, Yifan LIU, Zhenyan XIA, Aoyun ZHENG. Research on End-to-end Low-light Environment Black Pig Detection Technology Integrating IAT Module [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 113-125. |
[3] | Guobin JIANG. Analysis of Status and Development Trend on the Protection of New Agricultural Plant Varieties in China [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 1-11. |
[4] | Dabing YANG, Liang HU, Xueshu DU, Bingliang WAN, Mingyuan XIA, Huaxiong QI, Jinbo LI. Progress in Creation of Rice Male Sterile Lines by CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 24-34. |
[5] | Qian JIA, Sa YE, Hui ZHANG, Limin CHUAN, Jingjuan ZHAO. Research on Core Technology of Crop Biological Breeding Based on the Perspective of Core Patent Identification [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 35-48. |
[6] | Guoqiang DUN, Xingpeng WU, Xinxin JI, Fuli ZHANG, Wenyi JI, Yongzhen YANG. Simulation and Optimization of Soybean Plot Metering Device with Double Swing Plate [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 82-90. |
[7] | Huqu ZHAI, Bing CAO, Shuang GU, Zhiqiang XIA, Zhihui XIA, Jiajian GONG, Hang YIN, Li LI, Wei LI, Jie REN. Preliminary Report on Breeding Materials Induced by Electron Accelerator [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 210-216. |
[8] | Haosen YANG. Impact of Industrialization of Soybean Bio-breeding in China on Trade Dependency [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 15-22. |
[9] | Ning ZHAO, Xing LI, Yong JIANG, Zhixiu WANG, Yulin BI, Guohong CHEN, Hao BAI, Guobin CHANG. Application of Image Recognition Technology in the Field of Chicken Breeding [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 13-22. |
[10] | Jingli GUO, Yuhong ZHANG, Caijiao SHENG. Countermeasures and Suggestions for Promoting the Industrialization of China’s Biological Breeding Technology [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 1-5. |
[11] | Wenzhu YANG, Rumei CHEN. Breeding Progress of Anthocyanin Corn [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 18-24. |
[12] | Shuai WANG, Wei SONG, Ronghuan WANG, Jiuran ZHAO. Progress of Maize Biology Research in China [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 23-31. |
[13] | Zhengwen SUN, Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA. Research Progress on Cotton Gene Discovery and Molecular Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 32-38. |
[14] | Wentong LI, Shanying YAN, Tianwen WU. Applications and Prospects of Metabonomics in Animal Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 39-45. |
[15] | Zunkang CUI, Danyang LI, Xiaoting XU, Junfeng ZHU, Laping WU, Wenge ZUO. Research on the Global Innovation Layout and Competition Situation of Food Crop Bio-breeding Technology: Based on the Perspective of Core Patent Data Mining [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||