








Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (8): 93-102.DOI: 10.13304/j.nykjdb.2022.1109
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Dawei LIU1(
), Feng QIN1, Qian LIAO2(
), Xiushan WANG1, Fangping XIE1, Tiehui LI3
Online:2024-08-15
Published:2024-08-12
Contact:
Qian LIAO
About author:LIU Dawei E-mail:liudawei8361@163.com
Supported by:
刘大为1(
), 秦锋1, 廖骞2(
), 王修善1, 谢方平1, 李铁辉3
通讯作者:
廖骞
CLC Number:
Dawei LIU, Feng QIN, Qian LIAO, Xiushan WANG, Fangping XIE, Tiehui LI. Optimization and Experimental Study of Drying Process Parameters for Rice in Hot-air Drying[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 93-102.
刘大为, 秦锋, 廖骞, 王修善, 谢方平, 李铁辉. 南方籼稻热风干燥特性及其工艺参数优化[J]. 中国农业科技导报, 2024, 26(8): 93-102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.1109
| Level | A: Drying temperature/℃ | B: Proportion of tempering time | C: Initial moisture content/% |
|---|---|---|---|
| -1 | 45 | 0.670 | 22 |
| 0 | 50 | 0.735 | 24 |
| 1 | 55 | 0.800 | 26 |
Table 1 Experimental factors and levels
| Level | A: Drying temperature/℃ | B: Proportion of tempering time | C: Initial moisture content/% |
|---|---|---|---|
| -1 | 45 | 0.670 | 22 |
| 0 | 50 | 0.735 | 24 |
| 1 | 55 | 0.800 | 26 |
| Test group | Factor | Evaluation index | |||
|---|---|---|---|---|---|
| Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Explosive waist increase rate/% | |
| 1a | 45 | 0.735 | 26 | 0.015 43 | 1.4 |
| 2a | 45 | 0.735 | 22 | 0.014 01 | 1.8 |
| 3a | 45 | 0.670 | 24 | 0.017 13 | 2.2 |
| 4a | 45 | 0.800 | 24 | 0.013 83 | 1.8 |
| 5a | 50 | 0.670 | 26 | 0.023 01 | 3.2 |
| 6a | 50 | 0.800 | 22 | 0.013 96 | 2.0 |
| 7a | 50 | 0.800 | 26 | 0.016 84 | 1.6 |
| 8a | 50 | 0.735 | 24 | 0.017 60 | 3.0 |
| 9a | 50 | 0.670 | 22 | 0.020 60 | 4.6 |
| 10a | 50 | 0.735 | 24 | 0.017 47 | 2.8 |
| 11a | 50 | 0.735 | 24 | 0.017 92 | 2.4 |
| 12a | 50 | 0.735 | 24 | 0.017 85 | 2.6 |
| 13a | 50 | 0.735 | 24 | 0.017 39 | 2.6 |
| 14a | 55 | 0.735 | 22 | 0.025 37 | 5.6 |
| 15a | 55 | 0.670 | 24 | 0.031 80 | 6.2 |
| 16a | 55 | 0.735 | 26 | 0.026 53 | 5.2 |
| 17a | 55 | 0.800 | 24 | 0.021 91 | 4.8 |
Table 2 Experimental design and results of Zhongzao 35
| Test group | Factor | Evaluation index | |||
|---|---|---|---|---|---|
| Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Explosive waist increase rate/% | |
| 1a | 45 | 0.735 | 26 | 0.015 43 | 1.4 |
| 2a | 45 | 0.735 | 22 | 0.014 01 | 1.8 |
| 3a | 45 | 0.670 | 24 | 0.017 13 | 2.2 |
| 4a | 45 | 0.800 | 24 | 0.013 83 | 1.8 |
| 5a | 50 | 0.670 | 26 | 0.023 01 | 3.2 |
| 6a | 50 | 0.800 | 22 | 0.013 96 | 2.0 |
| 7a | 50 | 0.800 | 26 | 0.016 84 | 1.6 |
| 8a | 50 | 0.735 | 24 | 0.017 60 | 3.0 |
| 9a | 50 | 0.670 | 22 | 0.020 60 | 4.6 |
| 10a | 50 | 0.735 | 24 | 0.017 47 | 2.8 |
| 11a | 50 | 0.735 | 24 | 0.017 92 | 2.4 |
| 12a | 50 | 0.735 | 24 | 0.017 85 | 2.6 |
| 13a | 50 | 0.735 | 24 | 0.017 39 | 2.6 |
| 14a | 55 | 0.735 | 22 | 0.025 37 | 5.6 |
| 15a | 55 | 0.670 | 24 | 0.031 80 | 6.2 |
| 16a | 55 | 0.735 | 26 | 0.026 53 | 5.2 |
| 17a | 55 | 0.800 | 24 | 0.021 91 | 4.8 |
| Test group | Factor | Evaluation index | |||
|---|---|---|---|---|---|
| Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Additional crack percentage /% | |
| 1b | 45 | 0.735 | 26 | 0.023 07 | 2.6 |
| 2b | 45 | 0.735 | 22 | 0.021 23 | 3.2 |
| 3b | 45 | 0.670 | 24 | 0.025 74 | 3.6 |
| 4b | 45 | 0.800 | 24 | 0.019 61 | 2.2 |
| 5b | 50 | 0.670 | 26 | 0.030 24 | 4.6 |
| 6b | 50 | 0.800 | 22 | 0.020 88 | 3.2 |
| 7b | 50 | 0.800 | 26 | 0.023 00 | 2.6 |
| 8b | 50 | 0.735 | 24 | 0.026 93 | 4.2 |
| 9b | 50 | 0.670 | 22 | 0.035 96 | 6.0 |
| 10b | 50 | 0.735 | 24 | 0.026 60 | 4.4 |
| 11b | 50 | 0.735 | 24 | 0.027 26 | 3.6 |
| 12b | 50 | 0.735 | 24 | 0.025 71 | 4.0 |
| 13b | 50 | 0.735 | 24 | 0.026 21 | 3.8 |
| 14b | 55 | 0.735 | 22 | 0.044 76 | 6.8 |
| 15b | 55 | 0.670 | 24 | 0.052 95 | 7.4 |
| 16b | 55 | 0.735 | 26 | 0.037 37 | 6.4 |
| 17b | 55 | 0.800 | 24 | 0.032 26 | 6.2 |
Table 3 Experimental design and results of Yuzhenxiang
| Test group | Factor | Evaluation index | |||
|---|---|---|---|---|---|
| Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Additional crack percentage /% | |
| 1b | 45 | 0.735 | 26 | 0.023 07 | 2.6 |
| 2b | 45 | 0.735 | 22 | 0.021 23 | 3.2 |
| 3b | 45 | 0.670 | 24 | 0.025 74 | 3.6 |
| 4b | 45 | 0.800 | 24 | 0.019 61 | 2.2 |
| 5b | 50 | 0.670 | 26 | 0.030 24 | 4.6 |
| 6b | 50 | 0.800 | 22 | 0.020 88 | 3.2 |
| 7b | 50 | 0.800 | 26 | 0.023 00 | 2.6 |
| 8b | 50 | 0.735 | 24 | 0.026 93 | 4.2 |
| 9b | 50 | 0.670 | 22 | 0.035 96 | 6.0 |
| 10b | 50 | 0.735 | 24 | 0.026 60 | 4.4 |
| 11b | 50 | 0.735 | 24 | 0.027 26 | 3.6 |
| 12b | 50 | 0.735 | 24 | 0.025 71 | 4.0 |
| 13b | 50 | 0.735 | 24 | 0.026 21 | 3.8 |
| 14b | 55 | 0.735 | 22 | 0.044 76 | 6.8 |
| 15b | 55 | 0.670 | 24 | 0.052 95 | 7.4 |
| 16b | 55 | 0.735 | 26 | 0.037 37 | 6.4 |
| 17b | 55 | 0.800 | 24 | 0.032 26 | 6.2 |
| Variety | Index | Variation source | F value | P value |
|---|---|---|---|---|
| a: Zhongzao 35 | Drying rate (Y1a) | Model | 259.47 | <0.000 1** |
| Lack of fit | 5.96 | 0.058 7 | ||
| Drying temperature (A) | 1 518.35 | <0.000 1** | ||
| Proportion of tempering time (B) | 504.10 | <0.000 1** | ||
| Initial moisture content (C) | 46.36 | 0.000 3** | ||
| Additional crack percentage (Y2a) | Model | 40.28 | <0.000 1** | |
| Lack of fit | 3.4 | 0.134 1 | ||
| Drying temperature (A) | 273.93 | <0.000 1** | ||
| Proportion of tempering time (B) | 51.65 | 0.000 2** | ||
| Initial moisture content (C) | 8.01 | 0.025 4* | ||
| b: Yuzhenxiang | Drying rate (Y1b) | Model | 198.26 | <0.000 1** |
| Lack of fit | 3.19 | 0.145 9 | ||
| Drying temperature (A) | 1 057.62 | <0.000 1** | ||
| Proportion of tempering time (B) | 423.12 | <0.000 1** | ||
| Initial moisture content (C) | 14.67 | 0.006 5** | ||
| Additional crack percentage (Y2b) | Model | 26.71 | 0.000 1** | |
| Lack of fit | 2.5 | 0.198 5 | ||
| Drying temperature(A) | 175.79 | <0.000 1** | ||
| Proportion of tempering time (B) | 41.67 | 0.000 3** | ||
| Initial moisture content (C) | 6.85 | 0.034 6* |
Table 4 Analysis of variance of regression model
| Variety | Index | Variation source | F value | P value |
|---|---|---|---|---|
| a: Zhongzao 35 | Drying rate (Y1a) | Model | 259.47 | <0.000 1** |
| Lack of fit | 5.96 | 0.058 7 | ||
| Drying temperature (A) | 1 518.35 | <0.000 1** | ||
| Proportion of tempering time (B) | 504.10 | <0.000 1** | ||
| Initial moisture content (C) | 46.36 | 0.000 3** | ||
| Additional crack percentage (Y2a) | Model | 40.28 | <0.000 1** | |
| Lack of fit | 3.4 | 0.134 1 | ||
| Drying temperature (A) | 273.93 | <0.000 1** | ||
| Proportion of tempering time (B) | 51.65 | 0.000 2** | ||
| Initial moisture content (C) | 8.01 | 0.025 4* | ||
| b: Yuzhenxiang | Drying rate (Y1b) | Model | 198.26 | <0.000 1** |
| Lack of fit | 3.19 | 0.145 9 | ||
| Drying temperature (A) | 1 057.62 | <0.000 1** | ||
| Proportion of tempering time (B) | 423.12 | <0.000 1** | ||
| Initial moisture content (C) | 14.67 | 0.006 5** | ||
| Additional crack percentage (Y2b) | Model | 26.71 | 0.000 1** | |
| Lack of fit | 2.5 | 0.198 5 | ||
| Drying temperature(A) | 175.79 | <0.000 1** | ||
| Proportion of tempering time (B) | 41.67 | 0.000 3** | ||
| Initial moisture content (C) | 6.85 | 0.034 6* |
| Variety | Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) |
|---|---|---|---|---|
| Zhongzao 35 | 49.48 | 0.670 | 26 | 0.022 00 |
| Yuzhenxiang | 45.00 | 0.698 | 26 | 0.024 00 |
Table 5 Table of optimized parameter combination
| Variety | Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) |
|---|---|---|---|---|
| Zhongzao 35 | 49.48 | 0.670 | 26 | 0.022 00 |
| Yuzhenxiang | 45.00 | 0.698 | 26 | 0.024 00 |
| No. | Zhongzao 35 | Yuzhenxiang | ||
|---|---|---|---|---|
| Drying rate /(%·min-1) | Additional crack percentage/% | Drying rate /(%·min-1) | Additional crack percentage/% | |
| 1 | 0.023 14 | 3.00 | 0.024 57 | 2.60 |
| 2 | 0.022 18 | 2.80 | 0.025 18 | 3.20 |
| 3 | 0.023 08 | 2.80 | 0.024 08 | 2.60 |
| Average value | 0.022 80 | 2.87 | 0.024 61 | 2.80 |
Table 6 Experimental results of optimized parameter combinations
| No. | Zhongzao 35 | Yuzhenxiang | ||
|---|---|---|---|---|
| Drying rate /(%·min-1) | Additional crack percentage/% | Drying rate /(%·min-1) | Additional crack percentage/% | |
| 1 | 0.023 14 | 3.00 | 0.024 57 | 2.60 |
| 2 | 0.022 18 | 2.80 | 0.025 18 | 3.20 |
| 3 | 0.023 08 | 2.80 | 0.024 08 | 2.60 |
| Average value | 0.022 80 | 2.87 | 0.024 61 | 2.80 |
| 1 | ISLAM M, NASRIN T, ISLAM M, et al.. Investigation on appropriate two‐stage drying techniques for quality rice seeds [J/OL]. J. Food Process Eng., 2021,44(6), e13690 [2023-12-13]. . |
| 2 | PROCTOR D J. Grain storage techniques: evolution and trends in developing countries [R]. FAO Agricultural Services Bulletin,1995: No.109. |
| 3 | CNOSSEN A G, SIEBENMORGEN T J, YANG W, et al.. An application of glass transition temperature to explain rice kernel fissure occurrence during the drying process [J]. Drying Technol., 2001,19(8), 1661-1682. |
| 4 | ELBERT G, TOLABA M P, SUÁREZ C. Effects of drying conditions on head rice yield and browning index of parboiled rice [J]. J. Food Process Eng., 2001,47(1), 37-41. |
| 5 | GOLMOHAMMADI M, ASSAR M, RAJABI-HAMANEH M, et al.. Energy efficiency investigation of intermittent rice rice dryer: Modeling and experimental study [J]. Food Bioprod. Process., 2015,94: 275-283. |
| 6 | POOMSA-AD N, SOPONRONNARIT S, PRACHAYAWARAKORN S. Effect of tempering on subsequent drying of rice using fluidisation technique [J]. Drying Technol., 2002, 20(1): 195-210. |
| 7 | ZHANG Q, LITCHFIELD J B. An optimization of intermittent corn drying in a laboratory scale thin layer dryer [J]. Drying Technol., 1991,9(2), 383-395. |
| 8 | LIU M H, WU Y H, ZENG Y F, et al.. Fissure formation in rice kernel based on glass transition theory [J]. Trans. Chin. Soc. Agric. Eng., 2004(1), 30-34. |
| 9 | NGP P, LAWC L, TASIRINS M, et al.. Drying characteristics of Malaysian rice: kinetics & grain cracking quality [J]. Drying Technol., 2005,23 (12), 2477-2489. |
| 10 | DING C, KHIR R, PAN Z, et al.. Influence of infrared drying on storage characteristics of brown rice [J]. Food Chem., 2018, 264: 149-156. |
| 11 | JIN Y, WONG K W, WU Z, et al.. Relationship between accumulated temperature and quality of rice [J]. Int. J. Food Prop., 2019,22(1), 19-33. |
| 12 | BOOTKOTE P, SOPONRONNARIT S, PRACHAYAWARAKORN S. Process of producing parboiled rice with different colors by fluidized bed drying technique including tempering [J]. Food Bioprocess. Technol., 2016, 9(9): 1574-1586. |
| 13 | PRUENGAM P, SOPONRONNARIT S, PRACHAYAWARAKORN S, et al.. Rapid drying of parboiled rice using hot air impinging stream dryer [J]. Drying Technol., 2014,32(13/16), 1949-1955. |
| 14 | FOROUGHI-DAHR M, GOLMOHAMMADI M, POURJAMSHIDIAN R, et al.. On the characteristics of thin-layer drying models for intermittent drying of rough rice [J]. Chem. Eng. Commun., 2015, 202(8): 1024-1035. |
| 15 | MIDILLI A, KUCUK H, YAPAR Z. A new model for single-layer drying [J]. Drying Technol., 2002,20(7), 1503-1513. |
| 16 | YANG Z Y, ZHAO YANG, FEI YU, et al.. Ultrasound‐assisted heat pump intermittent drying of adzuki bean seeds: drying characteristics and parameter optimization [J]. J. Food Process Eng., 2020,43(10): e13501 [2023-12-13]. . |
| 17 | GOLMOHAMMADI M, ASSAR M, RAJABI-HAMANEH M, et al.. Energy efficiency investigation of intermittent rice rice dryer: modeling and experimental study [J]. Food Bioproducts Process., 2015,94, 275-283. |
| 18 | GRAHAM‐ACQUAAH S, SIEBENMORGEN T J. Rice paste viscosities and gel texture resulting from varying drying and tempering regimen [J]. Cereal Chem., 2021,98(2): 285-295. |
| 19 | WANG D Y, WANG J, QIU S, et al.. Optimization and test of process parameters for hot air drying and retardation of rice [J]. J. Agric. Eng., 2021, 37(17):285-292. |
| 20 | WU Z H, LIU B, WANG D, et al.. Research on the drying and slow-suffering characteristics of rice grain and crack generation law [J]. J. Agric. Mach., 2018, 49(5):368-374. |
| 21 | TANG R M, LONG L Y, ZHU Z G, et al.. High quality rice: [S]. Beijing: China Standard Press, 2017. |
| 22 | GAO X W, YANG H R, WU Y S, et al. Grain, oilseed, yellow rice grain and cracked grain Test Method [S]. Beijing: China National Standard Press, 1986. |
| 23 | National Health and Family Planning Commission of People’s Republic of China. National standard for food safety Determination of moisture in food: [S]. Beijing: China Standard Press, 2016. |
| [1] | Jianfeng ZHANG, Wenfeng HOU, Yongqing WU, Kaixu LI, Xiaokun LI. Effects of Nitrogen Fertilizer and Density Interactions on Occurrence of Diseases and Insect Pests and Grain Yield of Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 145-154. |
| [2] | Zhien LIU, Yong HE, Zhicheng WANG, Xiaokang ZHAN, Tingbao WANG, Yaowei LIU, Zhihong TIAN. Identification and Bioinformatics Analysis of Growth Regulating Factor GRF Gene Family in Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 18-27. |
| [3] | Zheng WU, Hongyun YANG, Aizhen SUN, Jie KONG, Shumei HUANG. Diagnosis of Potassium Nutrition in Rice Based on CA_MobileViT Model [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 80-88. |
| [4] | Lihua SHAO, Peng LI. Proteome Analysis of Rice Response to Gibberella fujikuroi Infection [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 126-135. |
| [5] | Wenting ZHANG, Yang LI, Shi QIU, Guangming LU, Dongshu GUO, Baolong ZHANG, Jinyan WANG. Effects of Badh2 Gene on Rice Quality Based on CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 39-48. |
| [6] | Huapeng HU, Xukun ZHANG, Jiajun CHEN, Yangyang PAN, Peilin YANG, Zhi LU. Structural Optimization and Moisture Content Simulation of Tea Residue Dual Axis Stirring Dryer [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 120-132. |
| [7] | Yan WU, Leping ZOU, Huijie SONG, Dandan HU, Kailou LIU, Wanli LIANG. Effect of Controlled-release Nitrogen Fertilizer Combined Urea on Ammonium Nitrogen of Surface Water and Early Rice Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 192-200. |
| [8] | Lintao CHEN, Zhaoxiang LIU, Ying LAN, Xiangwei MOU, Xu MA, Rijun WANG. Research on Rice Variety Identification Based on Hyperspectral Technology and Principal Component Analysis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 104-111. |
| [9] | Lecheng SHEN, Zhigang WEN, Han LIAO, Xianbiao LIU, Yaocong JIANG, Yuancong ZHANG, Ting LIU, Mei WANG. Effects of Foliar Spraying of Different Selenium Fertilizers on Selenium Content, Selenium Speciation and Components in Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 206-215. |
| [10] | Dabing YANG, Liang HU, Xueshu DU, Bingliang WAN, Mingyuan XIA, Huaxiong QI, Jinbo LI. Progress in Creation of Rice Male Sterile Lines by CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 24-34. |
| [11] | Guoliang ZHONG, Lin WAN, Gang CHE, Hao TANG, Tianqi QU, Qilin ZHANG. Influence of Drying Parameters on Hot Air Drying Rate and Energy Consumption of Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 95-103. |
| [12] | Chengliang XIONG, Qingfu ZHANG, Weiyuan YAO, Tao XIA, Qingping XU, Xixin ZHOU, Yi ZHANG, Lijuan CHEN, Liu YANG. Effects of Different Types of Rice Straw Addition on Soil Microbial Communities Under Continuous Tobacco Cropping [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 233-240. |
| [13] | Ronghua WEI, Ming YIN, Wensheng WANG, Yanru CUI. Discovering of QTLs and Candidate Genes Related to Rice Heading Period Traits Based on BSA-seq [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 12-24. |
| [14] | Liang SUN, Yi XU, Qin CAI, Jinghao GUO, Can ZHAO, Baowei GUO, Zhipeng XING, Zhongyang HUO, Hongcheng ZHANG, Yajie HU. Research Progress on Effects of Medium and Trace Elements on Yield and Quality of Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 9-19. |
| [15] | Wei YUE, Hui WANG, Xi CHEN, Xinchun ZHAN, Xinmin RUAN. Study on Comprehensive Evaluation Method of Rice Quality in Anhui Province [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 141-147. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010802021197号