Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (2): 100-108.DOI: 10.13304/j.nykjdb.2022.0930
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Guangjun YANG1,2(), Yuan LIAO3, Zhichao ZHANG2, Rongzhen ZHONG4, Ziyuan DUAN2(
)
Received:
2022-10-29
Accepted:
2023-01-12
Online:
2024-02-15
Published:
2024-02-04
Contact:
Ziyuan DUAN
杨广军1,2(), 廖媛3, 张志超2, 钟荣珍4, 段子渊2(
)
通讯作者:
段子渊
作者简介:
杨广军 E-mail:guangjuny1011@163.com;
基金资助:
CLC Number:
Guangjun YANG, Yuan LIAO, Zhichao ZHANG, Rongzhen ZHONG, Ziyuan DUAN. Characteristics of Temporal Expression of Key Genes During Differentiation from Sheep Preadipocyte[J]. Journal of Agricultural Science and Technology, 2024, 26(2): 100-108.
杨广军, 廖媛, 张志超, 钟荣珍, 段子渊. 绵羊前体脂肪细胞分化过程中关键基因时序表达特征研究[J]. 中国农业科技导报, 2024, 26(2): 100-108.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0930
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
m-DLK1 | NM_001190703.1 | F: GCGTGGACCTGGAGAAAG R: ACAGAAGTTGCCTGAGAAGC | 194 |
m-ZFP423 | NM_001310520.1 | F: CACCTGCGATCACTGTCAG R: GACGCAACATCCTTGCTGGA | 141 |
m-SREBF1 | NM_001313979.1 | F: CTTTGGCCTCGCTTTTCGG R: TGGGTCCAATTAGAGCCATCTC | 118 |
m-PPARG | NM_001127330.3 | F: CTCCAAGAATACCAAAGTGCGA R: GCCTGATGCTTTATCCCCACA | 150 |
m-CEBPA | NM_001287514.1 | F: GCGGGAACGCAACAACATC R: GTCACTGGTCAACTCCAGCAC | 97 |
m-FABP4 | NM_001409513.1 | F: TGGGAACCTGGAAGCTTGTCTC R: GAATTCCACGCCCAGTTTGA | 197 |
m-ADIPOQ | NM_009605.5 | F: TCACCTACGACCAGTATCAG R: GAGAAGAAAGCCAGTAAATGT | 167 |
m-ACC1 | NM_133360.3 | F: AACATCCCCACGCTAAACAG R: CTGACAAGGTGGCGTGAAG | 117 |
m-FASN | NM_007988.3 | F: ATTGGCTCCACCAAATCCAAC R: CCCATGCTCCAGGGATAACAG | 90 |
m-LPL | NM_008509.2 | F: TCAGAGCCAAGAGAAGCAGCAA R: TTGTGTTGCTTGCCATCCTCA | 118 |
m-HSL | NM_001039507.2 | F: GATTTACGCACGATGACACAGT R: ACCTGCAAAGACATTAGACAGC | 114 |
m-β-actin | NM_007393.5 | F: TCTGGCACCACCTTCTACAATG R: AGCACAGCCTGGATAGCAACG | 171 |
o-DLK1 | XM_027957402.2 | F: TCTGCGAGATCATGACCAAC R: GGCTTGCACAGACACTTGAA | 214 |
o-ZFP423 | XM_027977817.2 | F: TTCCTGACCGAGTCCTCCCT R: TCTTGTGGTTCTCCTTGATGTGC | 193 |
o-SREBF1 | XM_027974786.2 | F: GAGCTTCGTGGTTTCCAGAG R: CTCAGGCTACGGTCCAGAAG | 158 |
o-PPARG | NM_001100921.1 | F: CCCTGGCAAAGCATTTGTAT R: ACTGACACCCCTGGAAGATG | 222 |
o-CEBPA | NM_001308574.1 | F: CAAAGCCAAGAAGTCCGT R: CTCAGTTGTTCCACCCGC | 180 |
o-FABP4 | NM_001114667.1 | F: AGTGGGTGTGGGCTTTGCTA R: TTTTCTCTTTATGGTGGTTG | 256 |
o-ADIPOQ | XM_042243690.1 | F: TCGTTGGTCCTAAGGGTGAC R: TTGGTAAAGCGAATGGGAAC | 184 |
Table 1 Sequence of amplified primers
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
m-DLK1 | NM_001190703.1 | F: GCGTGGACCTGGAGAAAG R: ACAGAAGTTGCCTGAGAAGC | 194 |
m-ZFP423 | NM_001310520.1 | F: CACCTGCGATCACTGTCAG R: GACGCAACATCCTTGCTGGA | 141 |
m-SREBF1 | NM_001313979.1 | F: CTTTGGCCTCGCTTTTCGG R: TGGGTCCAATTAGAGCCATCTC | 118 |
m-PPARG | NM_001127330.3 | F: CTCCAAGAATACCAAAGTGCGA R: GCCTGATGCTTTATCCCCACA | 150 |
m-CEBPA | NM_001287514.1 | F: GCGGGAACGCAACAACATC R: GTCACTGGTCAACTCCAGCAC | 97 |
m-FABP4 | NM_001409513.1 | F: TGGGAACCTGGAAGCTTGTCTC R: GAATTCCACGCCCAGTTTGA | 197 |
m-ADIPOQ | NM_009605.5 | F: TCACCTACGACCAGTATCAG R: GAGAAGAAAGCCAGTAAATGT | 167 |
m-ACC1 | NM_133360.3 | F: AACATCCCCACGCTAAACAG R: CTGACAAGGTGGCGTGAAG | 117 |
m-FASN | NM_007988.3 | F: ATTGGCTCCACCAAATCCAAC R: CCCATGCTCCAGGGATAACAG | 90 |
m-LPL | NM_008509.2 | F: TCAGAGCCAAGAGAAGCAGCAA R: TTGTGTTGCTTGCCATCCTCA | 118 |
m-HSL | NM_001039507.2 | F: GATTTACGCACGATGACACAGT R: ACCTGCAAAGACATTAGACAGC | 114 |
m-β-actin | NM_007393.5 | F: TCTGGCACCACCTTCTACAATG R: AGCACAGCCTGGATAGCAACG | 171 |
o-DLK1 | XM_027957402.2 | F: TCTGCGAGATCATGACCAAC R: GGCTTGCACAGACACTTGAA | 214 |
o-ZFP423 | XM_027977817.2 | F: TTCCTGACCGAGTCCTCCCT R: TCTTGTGGTTCTCCTTGATGTGC | 193 |
o-SREBF1 | XM_027974786.2 | F: GAGCTTCGTGGTTTCCAGAG R: CTCAGGCTACGGTCCAGAAG | 158 |
o-PPARG | NM_001100921.1 | F: CCCTGGCAAAGCATTTGTAT R: ACTGACACCCCTGGAAGATG | 222 |
o-CEBPA | NM_001308574.1 | F: CAAAGCCAAGAAGTCCGT R: CTCAGTTGTTCCACCCGC | 180 |
o-FABP4 | NM_001114667.1 | F: AGTGGGTGTGGGCTTTGCTA R: TTTTCTCTTTATGGTGGTTG | 256 |
o-ADIPOQ | XM_042243690.1 | F: TCGTTGGTCCTAAGGGTGAC R: TTGGTAAAGCGAATGGGAAC | 184 |
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
o-ACC1 | NM_001009256.1 | F: ACCACCAACGCGAAGGT R: GTCAATGGCGGACAGGA | 114 |
o-FASN | XM_027974304.2 | F: GCCATCCTCTCTGCCTACTG R: CTGCTTCACGAACTCCAACA | 198 |
o-LPL | NM_001009394.1 | F: CTTCAACCACAGCAGCAAAA R: AAACTTGGCCACATCCTGTC | 211 |
o-HSL | NM_001128154.1 | F: CTCCGACTCAGACCAGAAGG R: AGGGCTGCTTCAGACACACT | 192 |
o-β-actin | NM_001009784.3 | F: CGGCAATGAGCGGTTCC R: CCGTGTTGGCGTAGAGGT | 143 |
Table 1 Sequence of amplified primers
基因名称 Gene name | 登录号 GenBank ID | 引物序列 Primer sequence (5’-3’) | 产物长度 Product size/bp |
---|---|---|---|
o-ACC1 | NM_001009256.1 | F: ACCACCAACGCGAAGGT R: GTCAATGGCGGACAGGA | 114 |
o-FASN | XM_027974304.2 | F: GCCATCCTCTCTGCCTACTG R: CTGCTTCACGAACTCCAACA | 198 |
o-LPL | NM_001009394.1 | F: CTTCAACCACAGCAGCAAAA R: AAACTTGGCCACATCCTGTC | 211 |
o-HSL | NM_001128154.1 | F: CTCCGACTCAGACCAGAAGG R: AGGGCTGCTTCAGACACACT | 192 |
o-β-actin | NM_001009784.3 | F: CGGCAATGAGCGGTTCC R: CCGTGTTGGCGTAGAGGT | 143 |
Fig. 1 Morphological feature of 3T3-L1 cell line and ovine preadipocytes and mature adipocytes stained by oil red OA: 3T3-L1 converged to 90%; B~D: 3T3-L1 induced for 8 d and magnified 16, 40, 80 times after oil red O staining; E: Sheep preadipocytes converged to 90%; F~H: Sheep preadipocytes induced for 16 d and magnified 16, 40, 80 times after oil red O staining
Fig. 2 Expression of gene related to adipogenic differentiation in 3T3-L1 cell line and ovine preadipocytesNote:The ordinate on the left is the relative expression of sheep preadipocytes; the ordinate on the right is the expression level of 3T3-L1;sampling interval of sheep preadipocytes is 4 d, and sampling interval of 3T3-L1 is 2 d. Different lowercase letters indicate significant differences between different sampling times of same cell line at P<0.05 level.
1 | MAO Y W, HOPKINS D L, ZHANG Y M, et al.. Consumption patterns and consumer attitudes to beef and sheep meat in China [J]. J. Food Nutr. Res., 2016, 4(42):30-39. |
2 | ROLLS B J, DREWNOWSKI A, LEDIKWE J H. Changing the energy density of the diet as a strategy for weight management [J]. J. Am. Diet. Assoc., 2005, 105(S5):98-103. |
3 | KANTONO K, HAMID N, MA Q, et al.. Consumers’ perception and purchase behaviour of meat in China [J/OL]. Meat Sci., 2021, 179:108548 [2022-09-12]. . |
4 | GHABEN A L, SCHERER P E. Adipogenesis and metabolic health [J]. Nat. Rev. Mol. Cell Biol., 2019, 20(4):242-258. |
5 | NUNN E R, SHINDE A B, ZAGANJOR E. Weighing in on adipogenesis [J/OL]. Front. Physiol., 2022, 13:821278 [2022-09-12]. . |
6 | SUL H S. Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate [J]. Mol. Endocrinol., 2009, 23(11):1717-1725. |
7 | GUPTA R K, MEPANI R J, KLEINER S, et al.. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells [J]. Cell Metab., 2012, 15(2):230-239. |
8 | ARSENIJEVIC T, GRÉGOIRE F, DELFORGE V, et al.. Murine 3t3-l1 adipocyte cell differentiation model: validated reference genes for qpcr gene expression analysis [J/OL]. PLoS One, 2012, 7(5):e37517 [2022-09-12]. . |
9 | LEE J H, CHO H D, JEONG J H, et al.. New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3t3-l1 cells and obese rat model [J]. Food Chem., 2013, 141(3):3241-3249. |
10 | LEE J Y, KIM T Y, KANG H, et al.. Anti-obesity and anti-adipogenic effects of chitosan oligosaccharide (GO2KA1) in SD rats and in 3T3-L1 preadipocytes models [J/OL]. Molecules, 2021, 26(2): 0331 [2022-09-12]. . |
11 | PARK Y J, SEO D W, JU J Y, et al.. The antiobesity effects of buginawa in 3T3-L1 preadipocytes and in a mouse model of high-fat diet-induced obesity [J/OL]. Biomed. Res. Int., 2019, (3):3101987 [2022-09-12]. . |
12 | WONG M L, MEDRANO J F. Real-time PCR for mRNA quantitation [J]. Biotechniques, 2005, 39(1):75-85. |
13 | DUFAU J, SHEN J X, COUCHET M, et al.. In vitro and ex vivo models of adipocytes [J]. Am. J. Physiol. Cell Physiol., 2021, 320(5):822-841. |
14 | SCOTT M A, NGUYEN V T, LEVI B, et al.. Current methods of adipogenic differentiation of mesenchymal stem cells [J]. Stem Cell Dev., 2011, 20(10):1793-1804. |
15 | 潘红梅,闫尊强,龙熙,等.3T3-L1前脂肪细胞诱导分化方法的建立[J].中国畜牧杂志,2016,52(15):94-97. |
16 | 赵蕾,郑美丽,杨梅,等.3T3-L1前体脂肪细胞诱导分化方法优化的初步探讨[J].首都医科大学学报,2019,40(2):226-231. |
ZHAO L, ZHENG M L, YANG M, et al.. Optimization of induction and differentation of 3T3-L1 preadipocyte [J]. J. Captial Med. Univ., 2019, 40(2):226-231. | |
17 | PU Y, VEIGA A. Pparγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes [J/OL]. Cell. Mol. Biol. Lett., 2017, 22:6 [2022-09-12]. . |
18 | WANG Y, LI X, CAO Y, et al.. Effect of the acaa1 gene on preadipocyte differentiation in sheep [J/OL]. Front. Genet., 2021, 12:649140 [2022-09-12]. . |
19 | XIAO C, JIN H G, ZHANG L C, et al.. Effects of SPARCL1 on the proliferation and differentiation of sheep preadipocytes [J]. Adipocyte, 2021, 10(1):658-669. |
20 | DENG K, REN C, LIU Z, et al.. Characterization of RUNX1T1, an adipogenesis regulator in ovine preadipocyte differentiation [J]. Int. J. Mol. Sci., 2018, 19(5):1300 [2022-09-12]. . |
21 | ZENG J, ZHOU S W, ZHAO J, et al.. Role of OXCT1 in ovine adipose and preadipocyte differentiation [J]. Biochem. Biophys. Res. Commun., 2019, 512(4):779-785. |
22 | HAUSMAN G J, BASU U, WEI S, et al.. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location [J]. Annu. Rev. Anim. Biosci., 2014, 2:323-351. |
23 | BOHAN A E, PURVIS K N, BARTOSH J L, et al.. The proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°Celsius compared to euthermic conditions in pigs [J]. Adipocyte, 2014, 3(4):322-332. |
24 | PATEL N G, HOLDER J C, SMITH S A, et al.. Differential regulation of lipogenesis and leptin production by independent signaling pathways and rosiglitazone during human adipocyte differentiation [J]. Diabetes, 2003, 52(1):43-50. |
25 | LI B J, QIAO L Y, YAN X R, et al.. mRNA expression of genes related to fat deposition during in vitro ovine adipogenesis [J]. Can. J. Anim. Sci., 2019, 99(4):764-771. |
26 | WANG Y, KIM K A, KIM J H, et al.. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis [J]. J. Nutr., 2006, 136(12):2953-2956. |
27 | ZHU Y, QI C, KORENBERG J R, et al.. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mppar gamma) gene: alternative promoter use and different splicing yield two mppar gamma isoforms [J]. Proc. Natl. Acad. Sci. USA, 1995, 92(17):7921-7925. |
28 | WANG Q A, TAO C, JIANG L, et al.. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation [J]. Nat. Cell Biol., 2015, 17(9):1099-1111. |
29 | JANANI C, RANJITHA-KUMARI B D. PPAR gamma gene: a review [J]. Diabetes Metab. Syndrome., 2015, 9(1):46-50. |
30 | KIM J B, WRIGHT H M, WRIGHT M, et al.. ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand [J]. Proc. Natl. Acad. Sci. USA, 1998, 95(8):4333-4337. |
31 | ZHAO X, FENG D, WANG Q, et al.. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1 [J]. J. Clin. Invest., 2012, 122(7): 2417-2427. |
32 | HORTON J D. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis [J]. Biochem. Soc. Trans., 2002, 30(6):1091-1095. |
33 | EBERLÉ D, HEGARTY B, BOSSARD P, et al.. SREBP transcription factors: master regulators of lipid homeostasis [J]. Biochimie, 2004, 86(11):839-848. |
34 | DOROTEA D, KOYA D, HA H. Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways [J/OL]. Front. Pharmacol., 2020, 11:265 [2022-09-12]. . |
35 | ELSTNER E, MÜLLER C, KOSHIZUKA K, et al.. Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice [J]. Proc. Natl. Acad. Sci. USA, 1998, 95(15):8806-8811. |
36 | OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets [J]. Nat. Rev. Mol. Cell. Biol., 2019, 20(3):137-155. |
37 | SMITH S, WITKOWSKI A, JOSHI A K. Structural and functional organization of the animal fatty acid synthase [J]. Prog. Lipid Res., 2003, 42(4):289-317. |
38 | WANG H, ECKEL R H. Lipoprotein lipase: from gene to obesity [J]. Am. J. Physiol-Endocrinol. Metab., 2009, 297(2):271-288. |
39 | TSUBAKIO-YAMAMOTO K, SUGIMOTO T, NISHIDA M, et al.. Serum adiponectin level is correlated with the size of HDL and LDL particles determined by high performance liquid chromatography [J]. Metabolism, 2012, 61(12):1763-1770. |
40 | CHAN D C, WATTS G F, NG T W, et al.. Adiponectin and other adipocytokines as predictors of markers of triglyceride-rich lipoprotein metabolism [J]. Clin. Chem., 2005, 51(3):578-585. |
41 | YANAI H, YOSHIDA H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives [J/OL]. Int. J. Mol. Sci., 2019, 20(5):1190 [2022-09-12]. . |
42 | FURUHASHI M, HOTAMISLIGIL G S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets [J]. Nat. Rev. Drug. Discov., 2008, 7(6):489-503. |
43 | ZIMMERMAN A W, VEERKAMP J H. New insights into the structure and function of fatty acid-binding proteins [J]. Cell. Mol. Life Sci., 2002, 59(7):1096-1116. |
44 | RODRÍGUEZ-CALVO R, GIRONA J, ALEGRET J M, et al.. Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease [J]. J. Endocrinol., 2017, 233(3):173-184. |
45 | OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets [J]. Nat. Rev. Mol. Cell Biol., 2019, 20(3):137-155. |
46 | ROSAS-BALLINA M, GUAN X L, SCHMIDT A, et al.. Classical activation of macrophages leads to lipid droplet formation without de novo fatty acid synthesis [J/OL]. Front. Immunol., 2020, 11:131 [2022-09-12]. . |
[1] | Xiaowei CHEN, Yuzhu SHA, Xiu LIU, Pengyang SHAO, Fanxiong WANG, Zhuanhui XIE, Wenxin YANG, Qianling CHEN, Min GAO, Wei HUANG. Analysis of Gene Expression Characteristics Associated with Quality, Nutrient Composition, and Meat Quality of Tibetan Sheep Meat During Different Phenological Stages [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 161-171. |
[2] | Guoshun CHEN, Bin TIAN, Yancheng GAO, Yancui LI, Wenjin TIAN, Wenjing YANG, Wancheng WU, Lijun HUANG. Effects of Astragalus Polysaccharides on Production Performance, Carcass Performance and Meat Quality of Stellar-fed Tan Sheep [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 150-157. |
[3] | Fanxiong WANG, Ying XU, Yuzhu SHA, Pengyang SHAO, Zhuanhui XIE, Wenhao LI, Jiqing WANG, Shaobin LI, Xiaowei CHEN, Wenxin YANG, Xiu LIU. Analysis of Muscle Fatty Acid Characteristics of Tibetan Sheep of Different Ages [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 74-83. |
[4] | Longbin WANG, Mingna LI, Yuzhu LUO, Jiqing WANG, Zhiyun HAO, Jiyuan SHEN, Huimin ZHEN, Yuting ZHANG, Shutong YANG. Functional Analysis of SMAD2, SMAD3 and SMAD4 Genes in Ovarian Activity in Lesser Caecilian Sheep [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 69-79. |
[5] | Ying XU, Yue REN, Yuzhu SHA, Xiaoning PU, Xinyu GUO, Liangwei YAO, Pengyang SHAO, Jiqing WANG, Shaobin LI, Xiu LIU. Characteristics Analysis of Meat Fatty Acids of Tibetan Sheep at Different Altitudes Under Natural Grazing Conditions [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 67-76. |
[6] | Liangwei YAO, Yuzhu SHA, Xinyu GUO, Xiaoning PU, Ying XU, Jiqing WANG, Shaobin LI, Zhiyun HAO, Xiu LIU. Analysis of Meat Quality, Nutritional Components and Expression Characteristics of Meat Quality-related Genes in Tibetan Sheep at Different Altitudes [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 66-75. |
[7] | Lingwei SUN, Mengxian HE, Jianjun DAI, Caifeng WU, Defu ZHANG, Yuexia LIN. Metabolomics in Neonatal Lambs of Hu-sheep with Intrauterine Growth Retardation [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 123-131. |
[8] | Wei YAN, Yutao WANG, Yonghao ZHANG, Haixia LIU, Dayong HAN, Aiwen ZHU. Study on Expressions of CNR1 and FABP4 Genes in Ovine Intramuscular Preadipocytes [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 95-102. |
[9] | YAN Wei1, LIU Haixia1, ZHANG Li1, HAN Dayong1, ZHU Aiwen1, ZHAO Xuting1*, LUO Yuzhu2*. Comparative Analysis of FABP4 Genetic Characteristcs of Ovine Population from China and New Zealand [J]. Journal of Agricultural Science and Technology, 2018, 20(9): 40-48. |
[10] |
LIU Yu-feng, WANG Ming-li*, SHI Zi-zhong, WANG Hong-|yu.
Analysis of Technical Efficiency and Technological Progress Contribution in Mutton Sheep Production [J]. , 2014, 16(3): 156-161. |
[11] | JIN Ling-yan|GU Xin|CAI Jin-hua|LIU Ya-ni. Detection of Dovine and Sheep Derived Materials in Feed by Two PCR Methods [J]. , 2008, 10(S2): 76-80. |
[12] | MA Yu-zhen, WANG Rui,YAN Zhen, WANG Li-min| LIU Dong-jun| XIA Guo-liang. Comparison Between Sheep Fetal Fibroblast Cells transfected with |GFP by Lipofectamine^TM and by Fugene-6 [J]. , 2008, 10(1): 108-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||