Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (4): 174-183.DOI: 10.13304/j.nykjdb.2023.0548
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Heyan WANG1(), Long LI1(
), Qiang LI2, Liang ZHANG1, Xinyu GAO3
Received:
2023-07-14
Accepted:
2023-12-04
Online:
2024-04-15
Published:
2024-04-23
Contact:
Long LI
通讯作者:
李龙
作者简介:
王鹤燕 E-mail:wangheyan2029@163.com;
基金资助:
CLC Number:
Heyan WANG, Long LI, Qiang LI, Liang ZHANG, Xinyu GAO. Influence of Reclamation of Open Pit Dumps on Soil Physical Properties in Semiarid Regions[J]. Journal of Agricultural Science and Technology, 2024, 26(4): 174-183.
王鹤燕, 李龙, 李强, 张亮, 高鑫宇. 半干旱地区露天矿排土场复垦对土壤物理性质的影响[J]. 中国农业科技导报, 2024, 26(4): 174-183.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2023.0548
编号 Code | 处理 Treatment | 土层深度 Soil layer/cm | 砾石分级 Gravel grading | 复垦年限 Reclamation period | 主要植被 Dominant vegetation | 植被盖度 Vegetation coverage/% |
---|---|---|---|---|---|---|
1 | WF | 0—20 | 多砾质土 Multi gravel soil | 未复垦 No reclaimed | 针茅、百里香 Stipa capillata L., Thymus mongolicus Ronn. | 32 |
2 | 20—40 | 多砾质土 Multi gravel soil | ||||
3 | 40—60 | 多砾质土 Multi gravel soil | ||||
4 | FK | 0—20 | 多砾质土 Multi gravel soil | 5 | 柠条锦鸡儿、沙地柏、山杏 Caragana korshinskii Kom., Sabina vulgaris Ant., Armeniaca sibirica (L.) Lam. | 60 |
5 | 20—40 | 多砾质土 Multi gravel soil | ||||
6 | 40—60 | 少砾质土 Less gravel soil | ||||
7 | ZR | 0—20 | 中砾质土 Medium gravel soil | — | 紫苜蓿、狗尾草、针茅、碱蓬 Medicago sativa L., Setaria viridis (L.) Beauv., Stipa capillata L.,Suaeda glanca (Bunge) Bunge | 88 |
8 | 20—40 | 少砾质土 Less gravel soil | ||||
9 | 40—60 | 少砾质土 Less gravel soil |
Table 1 Status of sampling sites
编号 Code | 处理 Treatment | 土层深度 Soil layer/cm | 砾石分级 Gravel grading | 复垦年限 Reclamation period | 主要植被 Dominant vegetation | 植被盖度 Vegetation coverage/% |
---|---|---|---|---|---|---|
1 | WF | 0—20 | 多砾质土 Multi gravel soil | 未复垦 No reclaimed | 针茅、百里香 Stipa capillata L., Thymus mongolicus Ronn. | 32 |
2 | 20—40 | 多砾质土 Multi gravel soil | ||||
3 | 40—60 | 多砾质土 Multi gravel soil | ||||
4 | FK | 0—20 | 多砾质土 Multi gravel soil | 5 | 柠条锦鸡儿、沙地柏、山杏 Caragana korshinskii Kom., Sabina vulgaris Ant., Armeniaca sibirica (L.) Lam. | 60 |
5 | 20—40 | 多砾质土 Multi gravel soil | ||||
6 | 40—60 | 少砾质土 Less gravel soil | ||||
7 | ZR | 0—20 | 中砾质土 Medium gravel soil | — | 紫苜蓿、狗尾草、针茅、碱蓬 Medicago sativa L., Setaria viridis (L.) Beauv., Stipa capillata L.,Suaeda glanca (Bunge) Bunge | 88 |
8 | 20—40 | 少砾质土 Less gravel soil | ||||
9 | 40—60 | 少砾质土 Less gravel soil |
Fig. 2 Physical properties of in different soil treatmentsNote: Different lowercase letters indicate significant differences between different soil treatments at P<0.05 level.
Fig. 3 Soil physical properties in different soil layers in the same areaNote: Different lowercase letters indicate significant differences between different soil layers of same treatment at P<0.05 level.
Fig.4 Soil physical properties in different regions of the same soil layerNote: Different lowercase letters indicate significant differences between different soil treatments of same soil layer at P<0.05 level.
指标 Index | 容重 Unit weight | 含水率 Moisture content | 饱和含水率 Saturated moisture content | 田间持水量 Field capacity |
---|---|---|---|---|
含水率 Moisture content | 0.200 | |||
饱和含水率 Saturated moisture content | -0.215 | 0.823** | ||
田间持水量 Field capacity | -0.561 | 0.503 | 0.658* | |
砾石含量 Gravel content | 0.216** | -0.716** | -0.831** | -0.523 |
Table 2 Correlation analysis among soil physical properties
指标 Index | 容重 Unit weight | 含水率 Moisture content | 饱和含水率 Saturated moisture content | 田间持水量 Field capacity |
---|---|---|---|---|
含水率 Moisture content | 0.200 | |||
饱和含水率 Saturated moisture content | -0.215 | 0.823** | ||
田间持水量 Field capacity | -0.561 | 0.503 | 0.658* | |
砾石含量 Gravel content | 0.216** | -0.716** | -0.831** | -0.523 |
回归方程 Regression equation | 决定系数R² | F值 F value | P值 P value |
---|---|---|---|
ρB=0.231YG+18.423 | 0.547 | 15.479 | <0.01 |
θg=0.565WB-6.491 | 0.677 | 20.916 | 0.03 |
θg=-0.22YG+15.616 | 0.513 | 10.537 | <0.01 |
WB=1.119TB+7.087 | 0.433 | 7.636 | <0.01 |
WB=-0.37YG+38.641 | 0.690 | 22.299 | <0.01 |
Table 3 Regression analysis of soil physical properties in mining area
回归方程 Regression equation | 决定系数R² | F值 F value | P值 P value |
---|---|---|---|
ρB=0.231YG+18.423 | 0.547 | 15.479 | <0.01 |
θg=0.565WB-6.491 | 0.677 | 20.916 | 0.03 |
θg=-0.22YG+15.616 | 0.513 | 10.537 | <0.01 |
WB=1.119TB+7.087 | 0.433 | 7.636 | <0.01 |
WB=-0.37YG+38.641 | 0.690 | 22.299 | <0.01 |
指标 Index | 第1主 成分PC1 | 第2主 成分PC2 |
---|---|---|
砾石含量 Gravel content | -0.911 | -0.031 |
田间持水量 Field capacity | 0.842 | -0.484 |
饱和含水率 Saturated moisture content | 0.667 | 0.472 |
容重 Unit weight | -0.477 | 0.845 |
含水率 Moisture content | 0.636 | 0.735 |
特征值 Eigenvalue | 2.616 | 1.713 |
贡献率 Contribution rate/% | 52.317 | 34.253 |
累积贡献率 Cumulative contribution rate/% | 52.317 | 86.570 |
Table 4 Principal component analysis feature vector
指标 Index | 第1主 成分PC1 | 第2主 成分PC2 |
---|---|---|
砾石含量 Gravel content | -0.911 | -0.031 |
田间持水量 Field capacity | 0.842 | -0.484 |
饱和含水率 Saturated moisture content | 0.667 | 0.472 |
容重 Unit weight | -0.477 | 0.845 |
含水率 Moisture content | 0.636 | 0.735 |
特征值 Eigenvalue | 2.616 | 1.713 |
贡献率 Contribution rate/% | 52.317 | 34.253 |
累积贡献率 Cumulative contribution rate/% | 52.317 | 86.570 |
处理 Treatment | 土层 Soil layer/cm | 得分 Score | 排名 Ranking | ||
---|---|---|---|---|---|
y1 | y2 | y | |||
ZR | 0—20 | 0.66 | -2.29 | -0.44 | 5 |
20—40 | 1.10 | -0.60 | 0.37 | 4 | |
40—60 | 1.26 | 0.99 | 1.00 | 2 | |
WF | 0—20 | -2.10 | -0.38 | -1.23 | 9 |
20—40 | -1.72 | 0.41 | -0.76 | 7 | |
40—60 | -2.30 | 1.24 | -0.78 | 8 | |
FK | 0—20 | 0.10 | -1.43 | -0.44 | 5 |
20—40 | 1.02 | 0.29 | 0.63 | 3 | |
40—60 | 1.99 | 1.76 | 1.65 | 1 |
Table 5 Comprehensive evaluation of physical and chemical indicators
处理 Treatment | 土层 Soil layer/cm | 得分 Score | 排名 Ranking | ||
---|---|---|---|---|---|
y1 | y2 | y | |||
ZR | 0—20 | 0.66 | -2.29 | -0.44 | 5 |
20—40 | 1.10 | -0.60 | 0.37 | 4 | |
40—60 | 1.26 | 0.99 | 1.00 | 2 | |
WF | 0—20 | -2.10 | -0.38 | -1.23 | 9 |
20—40 | -1.72 | 0.41 | -0.76 | 7 | |
40—60 | -2.30 | 1.24 | -0.78 | 8 | |
FK | 0—20 | 0.10 | -1.43 | -0.44 | 5 |
20—40 | 1.02 | 0.29 | 0.63 | 3 | |
40—60 | 1.99 | 1.76 | 1.65 | 1 |
1 | 王党朝,刘慧芳,肖武,等.胜利一号露天煤矿北排土场土壤物理性质空间分布研究[J].中国煤炭,2018,44(11):135-140. |
WANG D C, LIU H F, XIAO W, et al.. Research on spatial distribution of soil physical properties in north dump of Shengli No.1 opencast coal mine [J]. China Coal, 2018, 44(11):135-140. | |
2 | 王舒菲,曹银贵,白中科,等.黄土露天矿区排土场重构土壤质地空间特征研究[J].西北林学院学报,2020,35(6):40-51. |
WANG S F, CAO Y G, BAI Z K, et al.. Spatial characteristics of reconstructed soil texture in dumping site of Loess open-pit mining area [J]. J. Northwest For. Univ., 2020, 35(6):40-51. | |
3 | 刘钊,韩磊,王丹月,等.陕北黄土高原煤矿区土壤理化性质及质量评价[J].煤炭学报,2021,46(5):1555-1564. |
LIU Z, HAN L, WANG D Y, et al.. Soil physicochemical properties and quality assessment in the coal mining area of Loess Plateau in Northern Shaanxi province [J]. J. China Coal Soc., 2021, 46(5):1555-1564. | |
4 | 黄森,刘月亭.露天煤矿排土场工程质量优化措施[J].能源科技,2020,18(3):36-38. |
HUANG S, LIU Y T. Optimization measures for the engineering quality of the dumping site in opencast coal mine [J]. Energy Sci. Technol., 2020, 18(3):36-38. | |
5 | 郭旭东,谢俊奇.新时代中国土地生态学发展的思考[J].中国土地科学,2018,32 (12):1-6. |
GUO X D, XIE J Q. Thoughts on the recent development of land ecology in the new era of China [J]. China Land Sci., 2018, 32 (12):1-6. | |
6 | 李玉婷,曹银贵,王舒菲,等.黄土露天矿区排土场重构土壤典型物理性质空间差异分析[J].生态环境学报,2020,29(3):615-623. |
LI Y T, CAO Y G, WANG S F, et al.. Changes of typical physical properties of reclaimed mine soil in the dump site of Loess open mining area [J]. Ecol. Environ. Sci., 2020, 29(3):615-623. | |
7 | 张建华,张琨,刘勇,等.山西省露天煤矿复垦区典型人工林凋落物持水性能研究[J].干旱区研究, 2023, 40(12):2043-2052. |
ZHANG J H, ZHANG K, LIU Y, et al.. Study on water-holding capacity of litters from typical artificial forests in reclaimed regions of the opencast coal mine in Shanxi province [J]. Arid Zone Res., 2023, 40(12):2043-2052. | |
8 | 赵艳玲,刘慧芳,王鑫,等.基于无人机影像的复垦排土场地形因子与土壤物理性质的关系研究[J].中国煤炭,2018,44(9):117-122. |
ZHAO Y L, LIU H F, WANG X, et al.. Research on relationship between terrain factors and soil physical properties of reclamation dump based upon UAV image [J]. China Coal, 2018, 44(9):117-122. | |
9 | 罗古拜,曹银贵,白中科,等.露天矿区排土场复垦地土壤容重差异、GPR特征识别与反演[J].农业资源与环境学报,2019,36(4):441-452. |
LUO G B, CAO Y G, BAI Z K, et al.. Soil bulk density difference, ground penetrating radar feature identification, and simulation for a reclaimed soil profile in the dumping site of an open pit mine [J]. J. Agric. Resour. Environ., 2019, 36(4):441-452. | |
10 | 谭学进,穆兴民,高鹏,等.黄土区植被恢复对土壤物理性质的影响[J].中国环境学,2019,39(2):713-722. |
TAN X J, MU X M, GAO P, et al.. Effects of vegetation restoration on changes to soil physical properties on the Loess plateau [J]. China Environ. Sci., 2019, 39(2):713-722. | |
11 | SCHROEDER P D, DANIELS W L, ALLEY M M. Chemical and physical properties of reconstructed mineral sand mine soils in southeastern Virginia [J]. Soil Sci., 2010, 175(1):2-9. |
12 | KUMAR S, SINGH A K, GHOSH P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mineland chrono sequence under tropical condition [J]. Sci. Total Environ., 2018, 625:1341-1350. |
13 | 刘永兵,郭威,宿俊杰,等.矿山人工植被-土壤恢复效果评价研究[J].测绘科学,2023,48(5):213-219, 246. |
LIU Y B, GUO W, SU J J, et al.. Evaluation of artificial vegetation-soil restoration effect of mine [J]. Sci. Survey. Mapp., 2023, 48(5):213-219, 246. | |
14 | 荣浩,阿比亚斯,葛楠.保水剂对矿山废弃的人工恢复草地土壤侵蚀的影响[J].内蒙古水利,2022(11):7-9. |
15 | 吴惠敏,党晓宏,翟波,等.西鄂尔多斯珍稀濒危沙冬青及伴生种对土壤特征的影响[J].干旱区研究,2023,40(5):767-776. |
WU H M, DANG X H, ZHAI B, et al.. Effects of rare and endangered Ammopiptanthus mongolicus and associated species on soil characteristics in western Ordos [J]. Arid Zone Res., 2023, 40(5):767-776. | |
16 | 关湘茹,庞晓燕,吴元和.内蒙古黄土丘陵地区造林技术的探析[J].内蒙古林业调查设计,2015,38(4):59-60, 73. |
17 | 王义凤,雍世鹏,刘钟龄.内蒙古自治区的植被地带特征[J].植物学报,1979(3):274-284. |
WANG Y F, YONG S P, LIU Z L. Characteristics of the vegetational zones in the Inner Mongolia Autonomous Region [J]. J. Integr. Plant Biol., 1979(3):274-284. | |
18 | 屈创,王一淑,李鹏飞.黄土高原大型煤炭基地水土保持高质量发展示范创建实践[J].中国水土保持,2022(9):43-45. |
19 | 石伟业,何文寿,李惠霞,等.粉垄耕作对土壤理化性质和水稻生长及产量的影响[J].江苏农业科学,2023,51(1):232-238. |
20 | 朱丽,秦富仓.露天煤矿开采项目水土流失量预测——以内蒙古锡林郭勒盟胜利矿区一号露天煤矿为例[J].水土保持通报,2008(4):111-115, 137. |
ZHU L, QIN F C. Forecast of soil and water loss in opencast coal mine:based on No. 1 coal mine in Shengli diggings of Inner Mongolia [J]. Bull. Soil Water Conserv., 2008, 28(4):111-115, 137. | |
21 | 宋杨睿,王金满,李新凤,等.高潜水位采煤塌陷区重构土壤水分运移规律模拟研究[J].水土保持学报,2016,30(2):143-148, 154. |
SONG Y R, WANG J M, LI X F, et al.. Simulation of moisture transfer law with different soil reconstruction models in coal mining subsided area with high ground-water level [J]. J. Soil Water Conserv., 2016, 30(2):143-148, 154. | |
22 | 陈伟志,蒋关鲁,赵慧爽,等.铁路路基下膨胀土地基浸水响应现场试验[J].岩土工程学报,2014,36(8):1507-1514. |
CHEN W Z, JIANG G L, ZHAO H S, et al.. Field tests on soaking response of expansive soil foundation under railway subgrade [J]. Chin. J. Geotech. Eng., 2014, 36(8):1507-1514. | |
23 | 于佳禾,陈孝杨,严家平,等.粉煤灰场复垦地层状土壤水分变化[J].湖北农业科学,2013,52(20):4898-4902. |
YU J H, CHEN X Y, YAN J P, et al.. Mositure movement of stratified soil in reclamation land of fly ash disposal sites [J]. Hubei Agric. Sci., 2013, 52(20):4898-4902. | |
24 | 许阳光,郭文召,王文龙,等.极端降雨下黄土高原草被沟坡浅层滑坡特征及其对产流产沙的影响[J].生态学报,2022,42(19):7898-7909. |
XU Y G, GUO W Z, WANG W L, et al.. Characteristics of shallow landslides under extreme rainfall and their effects on runoff and sediment on the Loess Plateau [J]. Acta Ecol. Sin., 2022, 42(19):7898-7909. | |
25 | 涂立辉,熊伟,王彦辉,等.宁夏六盘山半干旱区典型植物群落的持水功能及其对土壤有机碳的影响[J].北京师范大学学报(自然科学版),2023,59(3):433-441. |
TU L H, XIONG W, WANG Y H, et al.. Water-holding capacity and impact on soil organic carbon of typical plant communities in semi-arid area in Liupan mountain, Ningxia [J]. J. Beijing Norm. Univ. (Nat. Sci.), 2023, 59(3):433-441. | |
26 | 张萌.黄土区露天煤矿排土场重构土壤颗粒分布的多重分形特征[D].北京:中国地质大学,2014. |
ZHANG M. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in Loess Area [D]. Beijing: China University of Geosciences, 2014. | |
27 | 田超,刘恒青,李东利,等.粉煤灰与有机肥配施对风沙土理化性质及黑麦草生长的影响[J].中国土壤与肥料,2022(7):98-106. |
TIAN C, LIU H Q, LI D L, et al.. Effects of combined application of fly ash and organic fertilizer on the physical and chemical properties of aeoliansandy soil and the growth of ryegrass [J]. Soil Fert. Sci. China, 2022 (7):98-106. | |
28 | 黄雨晗,况欣宇,曹银贵,等.草原露天矿区复垦地与未损毁地土壤物理性质对比[J].生态与农村环境学报,2019,35(7):940-946. |
HUANG Y H, KUANG X Y, CAO Y G, et al.. Comparison of soil physical properties between reclaimed land and undamaged land in grassland opencastmining area [J]. J. Ecol. Rural Environ., 2019, 35(7):940-946. | |
29 | 严子循,吴大为,吴静,等.内蒙古草原矿区重构土壤典型理化性质差异分析[J].露天采矿技术,2022,37(4):34-40. |
YAN Z X, WU D W, WU J, et al.. Difference analysis of typical soil physicochemical properties Inner Mongolia grassland mining area [J]. Opencast Min. Technol., 2022, 37(4):34-40. | |
30 | 杨文珊.高山砾石化驱动的高寒草甸群落和地表微生境及温室气体通量变化[D].杨凌:西北农林科技大学,2022. |
YANG W S. Changes in alpine meadow community,surface microhabitats and greenhouse gas fluxes driven by alpine gravelization [D]. Yangling: Northwest A&F University, 2022. | |
31 | 李叶鑫,吕刚,王道涵,等.北方草原区露天煤矿外排土场平台土体裂缝形态特征[J].煤炭学报,2020,45(11):3781-3792. |
LI Y X, LYU G, WANG D H, et al.. Morphological characteristics of ground fissures at surface coal minedump in northern grassland of China [J]. J. China Coal Soc., 2020, 45(11):3781-3792. | |
32 | 刘愫倩,徐绍辉,李晓鹏,等.土体构型对土壤水氮储运的影响研究进展[J].土壤,2016,48(22):219-224. |
LIU S Q, XU S H, LI X P, et al.. Effects of soil profile configuration on soil water and nitrogen storage and transportation: a review [J]. Soils, 2016, 48(22):219-224. | |
33 | 崔雪晴.岷江上游杂谷脑流域生态水文过程对土地覆盖和气候变化的响应[D].北京:中国林业科学研究院,2013. |
CUI X Q. Impact of landcover change and climate change on ecohydrological process in Zagunao Watershed, Upper Minjiang [D]. Beijing: Chinese Academy of Forestry, 2013. | |
34 | 余昭胜,廖艳芬,夏雨晴,等.基于层次和多指标综合评价分析法的能源与动力工程专业校外教学实习基地评价指标体系的研究[J].高等工程教育研究,2019():292-296. |
35 | 陈永春,赵萍,郑刘根,等.淮南潘一矿采煤沉陷复垦区土壤肥力时空变化特征[J].环境监测管理与技术,2021,33(3):21-24. |
CHEN Y C, ZHAO P, ZHENG L G, et al.. Temporal and spatial variation characteristics of soil fertility in coalmining subsidence reclamation area in Huainan Panyi Mine [J]. Administration Technique Environ. Monitoring, 2021, 33(3):21-24. | |
36 | 薛江.矿区排土场土壤水分物理特性及其改良研究[D].杨凌:西北农林科技大学,2015. |
XUE J. Moisture physical properties of the soil under the several vegetation restoration models and its improvement in the opencast coal mine dumping [D]. Yangling: Northwest A&F University, 2015. | |
37 | 王怡宁,郝鲜俊,高文俊,等.有机肥对矿区复垦土壤团聚体活性有机碳含量的影响[J].山西农业科学,2023,51(11):1299-1306. |
WANG Y N, HAO X J, GAO W J, et al.. Effect of organic fertilizer on the active organic carbon of soil agglomerates in reclaimed mine sites [J]. J. Shanxi Agric. Sci., 2023, 51 (11):1299-1306. | |
38 | 徐国俊.露天矿排土场不同复垦年限的土壤肥力影响分析[J].能源技术与管理,2022, 47(6):154-156, 181. |
[1] | Zhen CHENG, Jianlong NIU, Yuting MA, weiyang LIU, Xuewei JIANG, Xueqi LIANG, Hongqiang DONG. Dynamic Changes of Cotton Phenological Stages in Alar Reclamation Area of Southern Xinjiang from 1990 to 2020 [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 206-214. |
[2] | FANG Fei, QIN Fucang*, LI Long, YANG Zhenqi. Study on Soil Water Storage Performance of Different Forest Types at the North Piedmont of Yinshan Mountains [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 140-148. |
[3] | SUN Yunpeng1,2, YANG Jinsong1*, YAO Rongjiang1, CHEN Xiaobing3. Effects of Biochar and Fulvic Acid Application on Soil Properties in Tidal Flat Reclamation Region [J]. Journal of Agricultural Science and Technology, 2019, 21(8): 115-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||