Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (5): 101-109.DOI: 10.13304/j.nykjdb.2023.0110
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Fengguang HE1(), Zihong CHEN1, Ganran DENG1(
), Tenghui LI1,3, Sili ZHOU1, Guojie LI1, Zhende CUI1, Shuang ZHENG1, Ling LI1, Shuangmei QIN1, Xiang WANG2, Shaoying YANG2, Deqiang ZHOU3
Received:
2023-02-19
Accepted:
2023-04-25
Online:
2024-05-15
Published:
2024-05-14
Contact:
Ganran DENG
何冯光1(), 陈自宏1, 邓干然1(
), 李腾辉1,3, 周思理1, 李国杰1, 崔振德1, 郑爽1, 李玲1, 覃双眉1, 王翔2, 杨少应2, 周德强3
通讯作者:
邓干然
作者简介:
何冯光 E-mail: 879909560@qq.com;
基金资助:
CLC Number:
Fengguang HE, Zihong CHEN, Ganran DENG, Tenghui LI, Sili ZHOU, Guojie LI, Zhende CUI, Shuang ZHENG, Ling LI, Shuangmei QIN, Xiang WANG, Shaoying YANG, Deqiang ZHOU. Design and Performance of Cutting Depth Monitoring System for Sugarcane Harvester Cutter[J]. Journal of Agricultural Science and Technology, 2024, 26(5): 101-109.
何冯光, 陈自宏, 邓干然, 李腾辉, 周思理, 李国杰, 崔振德, 郑爽, 李玲, 覃双眉, 王翔, 杨少应, 周德强. 甘蔗收获机切割器入土切割深度监控系统设计与试验[J]. 中国农业科技导报, 2024, 26(5): 101-109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2023.0110
参数Parameter | 数值Value |
---|---|
发动机功率Engine power/kW | 162 |
外形尺寸(长×宽×高)Appearance size (length × width × height)/mm | 9 300 × 2 400 × 4 100 |
整机质量Total weight/kg | 9 500 |
收割行数Number of rows harvested | 1 |
收割行距Harvest spacing/m | ≥1.2 |
最大驾驶速度Maximum driving speed/(km·h-1) | 19 |
额定喂入量Rated feeding amount/(kg·s-1) | 5.5 |
生产率Pure working productivity/(hm2·h-1) | 0.26 |
Table 1 Main parameter of 4GQ-1 sugarcane harvester
参数Parameter | 数值Value |
---|---|
发动机功率Engine power/kW | 162 |
外形尺寸(长×宽×高)Appearance size (length × width × height)/mm | 9 300 × 2 400 × 4 100 |
整机质量Total weight/kg | 9 500 |
收割行数Number of rows harvested | 1 |
收割行距Harvest spacing/m | ≥1.2 |
最大驾驶速度Maximum driving speed/(km·h-1) | 19 |
额定喂入量Rated feeding amount/(kg·s-1) | 5.5 |
生产率Pure working productivity/(hm2·h-1) | 0.26 |
参数Parameter | 数值Value |
---|---|
定位精度Positioning accuracy/m | 3 |
速度精度Speed accuracy/ (m·s-1) | <0.1 |
最高定位更新率Maximum positioning update rate/ Hz | 10 |
最大速度Maximum speed/ (m·s-1) | 515 |
Table 2 Main parameter of ATGM332D module
参数Parameter | 数值Value |
---|---|
定位精度Positioning accuracy/m | 3 |
速度精度Speed accuracy/ (m·s-1) | <0.1 |
最高定位更新率Maximum positioning update rate/ Hz | 10 |
最大速度Maximum speed/ (m·s-1) | 515 |
水平 Level | 因素Factor | |
---|---|---|
前进速度 Forward speed/(m·s-1) | 安装高度 Mounting height/mm | |
1 | 2.50 | 30 |
2 | 2.00 | 25 |
3 | 1.50 | 20 |
4 | 1.00 | 15 |
Table 3 Factor level
水平 Level | 因素Factor | |
---|---|---|
前进速度 Forward speed/(m·s-1) | 安装高度 Mounting height/mm | |
1 | 2.50 | 30 |
2 | 2.00 | 25 |
3 | 1.50 | 20 |
4 | 1.00 | 15 |
编号 Code | 前进速度 Forward speed/(m·s-1) | 入土深度显示 Display of deepth/mm | 液压缸变化 Hydraulic cylinder variation/mm | 监测精度 Monitoring accuracy/% |
---|---|---|---|---|
1 | 0.5 | 11.0 | 11.0 | 100.00 |
2 | 1.0 | 11.1 | 11.2 | 99.11 |
3 | 1.5 | 11.3 | 11.2 | 99.11 |
4 | 2.0 | 11.3 | 11.1 | 98.20 |
5 | 2.5 | 10.9 | 11.0 | 99.09 |
6 | 3.0 | 11.3 | 11.2 | 99.09 |
7 | 3.5 | 11.2 | 11.0 | 99.09 |
8 | 4.0 | 11.2 | 11.0 | 98.18 |
9 | 4.5 | 11.3 | 11.1 | 98.20 |
Table 4 Test results of monitoring accuracy
编号 Code | 前进速度 Forward speed/(m·s-1) | 入土深度显示 Display of deepth/mm | 液压缸变化 Hydraulic cylinder variation/mm | 监测精度 Monitoring accuracy/% |
---|---|---|---|---|
1 | 0.5 | 11.0 | 11.0 | 100.00 |
2 | 1.0 | 11.1 | 11.2 | 99.11 |
3 | 1.5 | 11.3 | 11.2 | 99.11 |
4 | 2.0 | 11.3 | 11.1 | 98.20 |
5 | 2.5 | 10.9 | 11.0 | 99.09 |
6 | 3.0 | 11.3 | 11.2 | 99.09 |
7 | 3.5 | 11.2 | 11.0 | 99.09 |
8 | 4.0 | 11.2 | 11.0 | 98.18 |
9 | 4.5 | 11.3 | 11.1 | 98.20 |
试验号Number | 前进速度Forward speed/(m·s-1) | 安装高度Mounting height/ mm | 控制精度Control accuracy/% |
---|---|---|---|
1 | 2.5 | 30 | 99.5 |
2 | 2.5 | 25 | 99.0 |
3 | 2.5 | 20 | 99.2 |
4 | 2.5 | 15 | 98.7 |
5 | 2 | 30 | 99.3 |
6 | 2 | 25 | 98.8 |
7 | 2 | 20 | 99.4 |
8 | 2 | 15 | 98.4 |
9 | 1.5 | 30 | 99.8 |
10 | 1.5 | 25 | 98.9 |
11 | 1.5 | 20 | 98.2 |
12 | 1.5 | 15 | 98.9 |
13 | 1 | 30 | 99.3 |
14 | 1 | 25 | 97.1 |
15 | 1 | 20 | 97.3 |
16 | 1 | 15 | 96.4 |
Table 5 The test results of automatic control precision
试验号Number | 前进速度Forward speed/(m·s-1) | 安装高度Mounting height/ mm | 控制精度Control accuracy/% |
---|---|---|---|
1 | 2.5 | 30 | 99.5 |
2 | 2.5 | 25 | 99.0 |
3 | 2.5 | 20 | 99.2 |
4 | 2.5 | 15 | 98.7 |
5 | 2 | 30 | 99.3 |
6 | 2 | 25 | 98.8 |
7 | 2 | 20 | 99.4 |
8 | 2 | 15 | 98.4 |
9 | 1.5 | 30 | 99.8 |
10 | 1.5 | 25 | 98.9 |
11 | 1.5 | 20 | 98.2 |
12 | 1.5 | 15 | 98.9 |
13 | 1 | 30 | 99.3 |
14 | 1 | 25 | 97.1 |
15 | 1 | 20 | 97.3 |
16 | 1 | 15 | 96.4 |
差异源 Source of variance | 平方和 Sum of squared | 自由度 Degree of freedom | 均方 Mean square | F值F value | P值P value |
---|---|---|---|---|---|
前进速度Forward speed | 0.571 1 | 1 | 0.571 1 | 3.276 5 | 0.737 8 |
安装高度Mounting height | 1.768 8 | 1 | 1.768 8 | 10.148 0 | 0.573 0 |
回归Interaction | 0.883 0 | 5 | 0.176 6 | 1.013 2 | 0.509 0 |
残差Error | 0.697 0 | 4 | 0.174 3 | ||
总和Summation | 1.58 | 9 |
Table 6 Automatic control precision variance analysis results
差异源 Source of variance | 平方和 Sum of squared | 自由度 Degree of freedom | 均方 Mean square | F值F value | P值P value |
---|---|---|---|---|---|
前进速度Forward speed | 0.571 1 | 1 | 0.571 1 | 3.276 5 | 0.737 8 |
安装高度Mounting height | 1.768 8 | 1 | 1.768 8 | 10.148 0 | 0.573 0 |
回归Interaction | 0.883 0 | 5 | 0.176 6 | 1.013 2 | 0.509 0 |
残差Error | 0.697 0 | 4 | 0.174 3 | ||
总和Summation | 1.58 | 9 |
试验号Number | 预设值Default value/mm | 实际深度Actual depth/mm | 控制精度 Control accuracy/ % | 精度平均值Mean value/% |
---|---|---|---|---|
1 | 20 | 22.33 | 88.4 | 85.3 |
2 | 17.33 | 86.7 | ||
3 | 21.00 | 95.0 | ||
4 | 15.00 | 75.0 | ||
5 | 26.33 | 68.4 | ||
6 | 20.33 | 98.4 | ||
7 | 30 | 33.00 | 90.0 | 90.6 |
8 | 34.33 | 85.6 | ||
9 | 28.00 | 93.3 | ||
10 | 26.33 | 87.8 | ||
11 | 32.67 | 91.1 | ||
12 | 28.67 | 95.6 | ||
13 | 50 | 50.67 | 98.7 | 94.1 |
14 | 51.00 | 98.0 | ||
15 | 47.00 | 94.0 | ||
16 | 54.33 | 91.3 | ||
17 | 56.67 | 86.7 | ||
18 | 48.00 | 96.0 |
Table 7 Field test results of monitoring performance
试验号Number | 预设值Default value/mm | 实际深度Actual depth/mm | 控制精度 Control accuracy/ % | 精度平均值Mean value/% |
---|---|---|---|---|
1 | 20 | 22.33 | 88.4 | 85.3 |
2 | 17.33 | 86.7 | ||
3 | 21.00 | 95.0 | ||
4 | 15.00 | 75.0 | ||
5 | 26.33 | 68.4 | ||
6 | 20.33 | 98.4 | ||
7 | 30 | 33.00 | 90.0 | 90.6 |
8 | 34.33 | 85.6 | ||
9 | 28.00 | 93.3 | ||
10 | 26.33 | 87.8 | ||
11 | 32.67 | 91.1 | ||
12 | 28.67 | 95.6 | ||
13 | 50 | 50.67 | 98.7 | 94.1 |
14 | 51.00 | 98.0 | ||
15 | 47.00 | 94.0 | ||
16 | 54.33 | 91.3 | ||
17 | 56.67 | 86.7 | ||
18 | 48.00 | 96.0 |
1 | 梁阗,罗亚伟,游建华,等.不同机械种植模式对甘蔗产量及效益影响[J].中国糖料,2023,45(2):41-46. |
LIANG T, LUO Y W, YOU J H, et al.. Effects of different mechanical planting patterns on yield and benefit in sugarcane [J]. Sugar Crops China, 2023, 45(2): 41-46. | |
2 | 周敬辉,李尚平,莫翰宁.甘蔗收获机动态特性对宿根破头率影响的试验[J].农机化研究,2018,40(7):150-156. |
ZHOU J H, LI S P, MO H N. Test on influence of sugarcane harvester’s dynamic properties on the broken rate of ratoons [J]. J. Agric. Mechan. Res., 2018, 40(7): 150-156. | |
3 | 夏鼎宽,何冯光,邓干然,等.甘蔗收获机切割器仿形机构研究现状与发展趋势[J].现代农业装备,2021,42(1):15-20. |
XIA D K, HE F G, DENG G R, et al.. Research status and development trend of the profiling mechanism of sugarcane harvester cutter [J]. Mod. Agric. Equip., 2021, 42(1): 15-20. | |
4 | 胡朝晖.浅析我国甘蔗生产全程机械化的困境与前景[J].甘蔗糖业,2020 (3):7-13. |
HU Z H. Difficulties and prospects of sugarcane production mechanization in China [J]. Sugarcane Canesugar, 2020 (3): 7-13. | |
5 | 蔡力,付钰,乐欣荣,等.甘蔗收获机切割力影响因素试验[J].现代农业科技,2020 (16):124,126. |
6 | 钟家勤,李尚平,何永玲,等.基于BP神经网络的甘蔗收获机切割器振动性能研究[J].农机化研究,2019,41(3):193-198, 213. |
ZHONG J Q, LI S P, HE Y L, et al.. Research on vibration performance of sugarcane harvester cutter based on BP neural network [J]. J. Agric. Mechan. Res., 2019, 41(3): 193-198, 213. | |
7 | MO H N, LI S P, HE G Q, et al.. Dynamic characteristics of a simulated sugarcane field exciter for small sugarcane harvesters [J]. Discrete Dynamics Nat. Soc., 2022, 2022(10): 1-22. |
8 | RODRIGUEZ J S, DURAN J F, AGUILAR Y, et al.. Failure analysis in sugar cane cutter base blades [J/OL]. Eng. Failure Anal., 2020, 112: 104503 [2024-01-24]. . |
9 | SOMJET T, THANYA K. Simulation study of cutting sugarcane using fine sand abrasive waterjet [J]. Agric. Nat. Resour., 2016, 50(2): 146-153. |
10 | SUNIL K M, TONY E G, ALAN C H. Effect of blade oblique angle and cutting speed on cutting energy for energycane stems [J]. Biosys. Eng., 2015,133: 64-70. |
11 | TIAN K, LI X W, ZHANG B, et al.. Design and test research on cutting blade of corn harvester bases on bionic principle [J/OL]. Appl. Bionics Biomech., 2017, 2017: 6953786 [2024-01-24].. |
12 | 杨坚,梁兆新,莫建霖,等.甘蔗切割器切割质量影响因素的试验研究[J].农业工程学报,2005 (5):60-64. |
YANG J, LIANG Z X, MO J L, et al.. Experimental research on factors affecting the cutting quality of sugarcane cutter [J]. Trans. Chin. Soc. Agric. Eng., 2005 (5): 60-64. | |
13 | 刘庆庭,区颖刚,卿上乐,等.甘蔗茎秆切割力试验[J].农业工程学报,2007(7):90-94. |
LIU Q T, OU Y G, QING S L, et al.. Cutting force test of sugarcane stalk [J]. Trans. Chin. Soc. Agric. Eng., 2007 (7): 90-94. | |
14 | 杨望,杨坚,刘增汉,等.入土切割对甘蔗切割过程影响的仿真试验[J].农业工程学报,2011,27(8):150-156. |
YANG W, YANG J, LIU Z H, et al.. Dynamic simulation experiment on effects of sugarcane cutting beneath surface soil [J]. Trans. Chin. Soc. Agric. Eng., 2011, 27(8): 150-156. | |
15 | 刘银丁,杨望,杨坚,等.甘蔗收获切割系统动力学仿真模型[J].农机化研究,2019,41(9):15-20. |
LIU Y D, YANG W, YANG J, et al.. Dynamics simulation model of cutting system for sugarcane harvesting [J]. J. Agric. Mechan. Res., 2019, 41(9): 15-20. | |
16 | 麻芳兰,韦荣发,范志达,等.小型整秆式甘蔗收割机切割系统的改进与试验[J].农业工程学报,2014,30(15):18-24. |
MA F L, WEI R F, FAN Z D, et al.. Improvement and experiment on cutting system of small whole-stalk sugarcane harvester [J]. Trans. Chin. Soc. Agric. Eng., 2014, 30(15): 18-24. | |
17 | 周建阳,李尚平,潘宇晨,等.入土切割对砍蔗质量影响的研究[J].中国农机化学报,2016,37(1):22-25. |
ZHOU J Y, LI S P, PAN Y C, et al.. Study on the effect of soil cutting on quality of cutting sugarcane [J]. J. Chin. Agric. Mechan., 2016, 37(1): 22-25. | |
18 | 王增.甘蔗收获机入土切割控制的机理研究与设计仿真[D].广西:广西大学,2014. |
WANG Z. Research and simulation design on the mechanism controller system based on the cut depth of sugarcane harvester base cutter[D]. Guangxi : Guangxi University, 2014. | |
19 | 张亮.甘蔗联合收割机刀盘仿形随动控制系统的设计与研究[D].洛阳:河南科技大学,2014. |
ZHANG L. Study and design of cutting platform following control system of combined sugarcane harvester [D]. Luoyang: Henan University Science Technology, 2014. | |
20 | 徐莉萍,张亮,任德志.甘蔗联合收割机刀盘仿形系统研究及仿真[J].中国农机化学报,2014,35(5):30-32, 36. |
XU L P, ZHANG L, REN D Z. Study and simulation on cutter profiling system of combined sugarcane harvester [J]. J. Chin. Agric. Mechan., 2014, 35(5): 30-32, 36. | |
21 | 宫元娟,金忠博,白晓平,等.甘蔗收获机割台随动控制系统设计与试验[J].农业机械学报,2023,54(2):119-128, 138. |
GONG Y J, JIN Z B, BAI X P, et al.. Design and experiment of servo control system for sugarcane header [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(2): 119-128, 138. | |
22 | 王磊,廖宜涛,张青松,等.油麦兼用型精量宽幅免耕播种机仿形凿式开沟器研究[J].农业机械学报,2019,50(11):63-73. |
WANG L, LIAO Y T, ZHANG Q S, et al.. Design on profiling chisel opener of precision broad width no-tillage planter for rapeseed and wheat [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(11): 63-73. | |
23 | 王方艳,王东伟.4TSQ-2 型甜菜切顶机设计及试验[J].农业工程学报,2020,36(2):70-78. |
WANG F Y, WANG D W. Design and test of 4TSQ-2 sugar beet top cutter [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(2): 70-78. | |
24 | 麻芳兰,李科,罗晓虎,等.不同土壤对甘蔗入土切割负载压力影响的研究[J].农机化研究,2022,44(1):165-173. |
MA F L, LI K, LUO X H, et al.. Study of different soils on the load pressure of sugarcane cutting [J]. J. Agric. Mechan. Res., 2022, 44 (1): 165-173. |
[1] | Mingjun JIANG, Yanmin FAN, Hongqi WU, Hao ZHANG, Zhuo LIU, Dejun WANG. Remote Sensing Inversion Study of Relative Chlorophyll Content in Processing Tomato Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 89-99. |
[2] | Pengli SHI, Yanping LIU, Jianying GUO, Zhenqi YANG, Jinsheng FAN. Characteristics of Runoff and Sediment Yield of Different Treatment Modes of Dump Slope in Typical Grassland Mining Area [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 184-194. |
[3] | Ergang WANG, Pengyuan LYU, Yi ZHOU, Yu ZHAN, Guixiang HE, Lixiang WANG, Xinyue MIAO, Changbao CHEN, Qiong LI. Effects of Biocontrol Bacteria on Soil Properties and Bacterial Community Structure of Ginseng Continuous Cropping [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 140-148. |
[4] | Yan WU, Leping ZOU, Huijie SONG, Dandan HU, Kailou LIU, Wanli LIANG. Effect of Controlled-release Nitrogen Fertilizer Combined Urea on Ammonium Nitrogen of Surface Water and Early Rice Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 192-200. |
[5] | Bing YANG. Research Progress on Pathogenic Mechanism, Host Molecule Response, and Prevention and Control Methods of Soybean Phytophthora sojae [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 133-142. |
[6] | Ruoheng JIN, Xiaoyu LI, Jingwu YAO, Beibei WANG, Chunxia CAO, Daye HUANG. Effects of Bacillus thuringiensi on Intestinal Bacteria in Ectropis obliqua [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 141-149. |
[7] | Xuesong JIANG, Zifan RONG, Linfeng HUANG, Qing CHEN, Zhicheng JIA, Jinpeng WANG. Research Progress on Monitoring and Early Warning Technology of Forestry Pests and Diseases [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 1-16. |
[8] | Wenxuan SHI, Jinfang TAN, Qian ZHANG, Lantao LI, Yilun WANG. Effect of One-off Fertilization on Yield and Nitrogen Fertilizer Efficiency of Summer Maize in Different Ecological Regions [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 193-202. |
[9] | Yahui DING, Cheng CHEN, Xiaojun QIAO, Jianbo SHEN, Sen LIN, Yunhe ZHANG, Sisi FENG. Development and Application of Green Pest Control System Based on IoT Technology [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 77-86. |
[10] | Ming LI, Shuai DONG, Yongqiang PANG, Jiehua YAN, Wangzhong YE. Design Improvement and Test of Aeolian Sand Mixing Cutter [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 87-96. |
[11] | Yafeng ZHAO, Mengxue WANG, Deshuai WANG, Dongdong WANG, Yuan LI, Junfeng HU. Maize Root Image Segmentation Based on CP-DeepLabv3+ [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 110-116. |
[12] | Jiayu HU, Yang YANG, Hongyan ZHANG, Bingyang GAO, Linglu WANG, Junying YAN, Xiaomei SUN, Yanan ZHAO, Youliang YE. Effect of Topdressing Different Types of Nitrogen Fertilizer on Growth and Yield of Intercropped Peanut with Wheat [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 191-197. |
[13] | Xiao WEI, Chunxia CAO, Daye HUANG, Jingwu YAO, Qinfeng YUAN. Research Progress on Biocontrol Mechanism and Synergistic Disease Prevention of Trichoderma [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 126-135. |
[14] | Daye HUANG, Zhibin YU, Zhongyi WAN, Dan YANG, Jinping LI, Chunxia CAO. Study on Control Effect of Streptomyces phaeoluteichromatogenes HEBRC45958 Strain on Corynespora Leaf Spot of Tomato [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 136-142. |
[15] | Junjia CHANG, Jiaxin GAI, Gang TAO, Zhuanlonghai MO. Evaluation of the Growth-promoting Effect of Trichoderma harzianum on Tobacco and Its Induced Resistance to Black Shank Disease [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 168-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||