中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (9): 58-68.DOI: 10.13304/j.nykjdb.2025.0238
贾浩1(), 王洪这2, 孙正文1, 谷淇深1, 张冬梅1, 王星懿1, 张艳1, 卢怀玉2, 马峙英1, 王省芬1(
)
收稿日期:
2025-04-03
接受日期:
2025-05-26
出版日期:
2025-09-15
发布日期:
2025-09-24
通讯作者:
王省芬
作者简介:
贾浩 E-mail:1012846297@qq.com;
基金资助:
Hao JIA1(), Hongzhe WANG2, Zhengwen SUN1, Qishen GU1, Dongmei ZHANG1, Xingyi WANG1, Yan ZHANG1, Huaiyu LU2, Zhiying MA1, Xingfen WANG1(
)
Received:
2025-04-03
Accepted:
2025-05-26
Online:
2025-09-15
Published:
2025-09-24
Contact:
Xingfen WANG
摘要:
维管植物锌指蛋白(vascular plant one-zinc finger protein,VOZ)是高等植物特有的转录因子,参与调节植物生长发育和响应生物与非生物胁迫。为鉴定棉花VOZ基因家族并解析GhVOZ1基因在盐胁迫下的功能,对二倍体和四倍体棉种中VOZ基因家族进行分析。结果表明,二倍体和四倍体棉种分别含有3和8个VOZ成员,大多数陆地棉和海岛棉VOZ基因的结构具有较强保守性。GaVOZ1、GrVOZ1、GhVOZ1、GhVOZ5、GbVOZ1和GbVOZ6与多个耐盐基因聚为一类,表明这些基因可能具有相似的功能。在盐胁迫12 h时GhVOZs明显上调表达,其中GhVOZ1和GhVOZ5较对照上调近7倍,暗示这2个基因是响应盐胁迫反应的重要候选基因。GhVOZ1定位于细胞质,在拟南芥中超表达能显著增强植株耐盐性。以上研究结果为深入了解棉花VOZ基因在盐胁迫中的功能提供了参考,为耐盐分子改良提供了新基因资源。
中图分类号:
贾浩, 王洪这, 孙正文, 谷淇深, 张冬梅, 王星懿, 张艳, 卢怀玉, 马峙英, 王省芬. 棉花VOZ基因家族鉴定及GhVOZ1耐盐功能研究[J]. 中国农业科技导报, 2025, 27(9): 58-68.
Hao JIA, Hongzhe WANG, Zhengwen SUN, Qishen GU, Dongmei ZHANG, Xingyi WANG, Yan ZHANG, Huaiyu LU, Zhiying MA, Xingfen WANG. Genome-wide Identification of VOZ Genes Family in Cotton and Study on Salt Tolerance Function of GhVOZ1[J]. Journal of Agricultural Science and Technology, 2025, 27(9): 58-68.
表1 本研究所用引物序列
Table 1 Primer sequences used in this study
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞质Cytoplasm | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞质Cytoplasm | |||||
细胞核Nucleus | |||||
细胞外Extracellular | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
过氧化物酶体Peroxisome | |||||
细胞质Cytoplasm | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus |
表2 棉花VOZs家族成员信息
Table 2 VOZs family member information
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞质Cytoplasm | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞质Cytoplasm | |||||
细胞核Nucleus | |||||
细胞外Extracellular | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
过氧化物酶体Peroxisome | |||||
细胞质Cytoplasm | |||||
细胞核Nucleus | |||||
细胞核Nucleus | |||||
细胞核Nucleus |
图3 不同物种VOZ基因的系统发育树注:Gh—陆地棉;Gb—海岛棉;Ga—亚洲棉;Gr—雷蒙德氏棉;At—拟南芥;Os—水稻;Cq—藜麦。
Fig. 3 Phylogenetic tree of VOZ genes in different speciesNote:Gh—Gossypium hirsutum; Gb—Gossypium barbadense; Ga—Gossypium arboreum; Gr—Gossypium raimondii; At—Arabidopsis; Os—Oryza sativa; Cq—Chenopodium quinoa.
图5 盐胁迫处理下GhVOZs的表达分析注:*和**分别表示与CK在P<0.05和P<0.01水平差异显著。
Fig. 5 Expression analysis of GhVOZs under salt stressNote: * and ** indicate significant differences with CK at P<0.05 and P<0.01 levels, respectively.
图7 超表达GhVOZ1增强了拟南芥的耐盐性A:喷施除草剂筛选阳性植株;B:拟南芥植株GhVOZ1表达检测;C:野生型和超表达株系种子在不同盐处理的萌发情况;D:NaCl处理7 d后拟南芥种子萌发率统计;E:过表达转基因株系和野生型在0和150 mmol·L-1盐处理下的生长状态;**表示与WT间在P<0.01水平差异显著
Fig. 7 Overexpression of GhVOZ1 enhances salt resistance of Arabidopsis thalianaA: Spraying herbicides to screen overexpressing Arabidopsis plants; B:Expression level of GhVOZ1 in Arabidopsis plant. C: Seed germination of wild-type and overexpressing Arabidopsis seeds treated with different salt content treatments; D: Germination rate of Arabidopsis seeds on the medium with NaCl for 7 d; E: Growth state of the transgenic Arabidopsis and WT under 0 and 150 mmol·L-1 NaCl treatment;** indicates significant difference with WT at P<0.01 level
图8 GhVOZ1的互作蛋白预测及预测基因受盐胁迫诱导时的表达A:GhVOZ1互作蛋白预测;B:预测的GhVOZ1互作基因受盐胁迫诱导表达趋势。FPKM—每千个碱基的转录每百万映射读取的片段数。
Fig. 8 Prediction of proteins interacting with GhVOZ1 and expression of predicted interacting genes induced by salt stressA: Prediction of proteins interacting with GhVOZ1; B: Expression trends of the predicted interacting genes after induction of salinity stress. FPKM-Fragments per kilobase of exon model per million mapped fragments
[1] | 叶武威,刘金定.棉花种质资源耐盐性鉴定技术与应用[J].中国棉花, 1998, 25(9): 34-34, 38. |
YE W W, LIU J D. Identification technology and application of salt tolerance of cotton germplasm resources [J]. China Cotton, 1998, 25(9): 34-34, 38. | |
[2] | MITSUDA N, HISABORI T, TAKEYASU K, et al.. VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana [J]. Plant Cell Physiol., 2004, 45(7): 845-854. |
[3] | LUO D, QU L, ZHONG M, et al.. Vascular plant one-zinc finger 1 (VOZ1) and VOZ2 negatively regulate phytochrome B-mediated seed germination in Arabidopsis [J]. Biosci. Biotechnol. Biochem., 2020, 84(7): 1384-1393. |
[4] | YASUI Y, MUKOUGAWA K, UEMOTO M, et al.. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis [J]. Plant Cell, 2012, 24(8): 3248-3263. |
[5] | NAKAI Y, FUJIWARA S, KUBO Y, et al.. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis [J/OL]. Plant Signal. Behav., 2013, 8(3): e23358 [2025-03-20]. . |
[6] | WEN Y, CHAIRATTANAWAT C, VO K T X, et al.. VOZ1 and VOZ2 transcription factors regulate arsenic tolerance and distribution in rice and Arabidopsis [J/OL]. Front. Plant Sci., 2023, 14: 1209860 [2025-03-20]. . |
[7] | LI B, ZHENG J C, WANG T T, et al.. Expression analyses of soybean VOZ transcription factors and the role of GmVOZ1G in drought and salt stress tolerance [J/OL]. Int. J. Mol. Sci., 2020, 21(6): 2177 [2025-03-20]. . |
[8] | PRASAD K V S K, XING D, REDDY A S N. Vascular plant one-zinc-finger (VOZ) transcription factors are positive regulators of salt tolerance in Arabidopsis [J/OL]. Int. J. Mol. Sci., 2018, 19(12): 3731 [2025-03-20]. . |
[9] | XU M, ZHANG Z, JIAO Y, et al.. Genome-wide identification of vascular plant one-zinc-finger gene family in six Cucurbitaceae species and the role of CmoVOZ2 in salt and drought stress tolerance [J/OL]. Genes (Basel), 2024, 15(3): 307 [2025-03-20]. . |
[10] | SHI P, JIANG R, LI B, et al.. Genome-wide analysis and expression profiles of the VOZ gene family in quinoa (Chenopodium quinoa) [J/OL]. Genes (Basel), 2022, 13(10): 1695 [2025-03-20]. . |
[11] | NIU Y, ZHAO T, XU X, et al.. Genome-wide identification and characterization of GRAS transcription factors in tomato (Solanum lycopersicum) [J/OL]. PeerJ, 2017, 5: e3955 [2025-03-20]. . |
[12] | KOGUCHI M, YAMASAKI K, HIRANO T, et al.. Vascular plant one-zinc-finger protein 2 is localized both to the nucleus and stress granules under heat stress in Arabidopsis [J/OL]. Plant Signal. Behav., 2017, 12(3): e1295907 [2025-03-20]. . |
[13] | KUMAR S, CHOUDHARY P, GUPTA M, et al.. Vascular plant one-zinc finger1 (VOZ1) and VOZ2 interact with constans and promote photoperiodic flowering transition [J]. Plant Physiol., 2018, 176(4): 2917-2930. |
[14] | NAKAI Y, NAKAHIRA Y, SUMIDA H, et al.. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis [J]. Plant J., 2013, 73(5): 761-775. |
[15] | EISENHABER F, BORK P. Wanted: subcellular localization of proteins based on sequence [J]. Trends Cell Biol., 1998, 8(4): 169-170. |
[16] | LI B W, GAO S, YANG Z M, et al.. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis [J/OL]. Gene, 2022, 809: 146011 [2025-03-20]. . |
[17] | CHAWLA S, MAROTHIA D, PA0 TI P K. Role of serine/threonine phosphatase PP2A class and its regulators in salinity stress tolerance in plants [J/OL]. Biol. Environ. Sci., 2020, 21: 53-66 [2025-03-20]. . |
[18] | DEINLEIN U, STEPHAN A B, HORIE T, et al.. Plant salt-tolerance mechanisms [J]. Trends Plant Sci., 2014, 19(6): 371-379. |
[19] | JULKOWSKA M M, TESTERINK C. Tuning plant signaling and growth to survive salt [J]. Trends Plant Sci., 2015, 20(9): 586-594. |
[20] | PARIHAR P, SINGH S, SINGH R, et al.. Effect of salinity stress on plants and its tolerance strategies: a review [J]. Environ. Sci. Pollut. Res. Int., 2015, 22(6): 4056-4075. |
[21] | MA L, LIU X, LYU W, et al.. Molecular mechanisms of plant responses to salt stress [J/OL]. Front. Plant Sci., 2022, 13: 934877 [2025-03-20]. . |
[1] | 王满红, 肖梅娟, IRSHAD Ahmad, NIMIR Eltyb Ahmed Nimir, HANADI Ibrahim El Dessougi, 周桂生, 朱广龙. 高粱苗期耐盐性鉴定与评价[J]. 中国农业科技导报, 2025, 27(6): 52-63. |
[2] | 陈宜新, 杨秀波, 田士军, 王聪, 白志英, 李存东, 张科. 陆地棉GhCOMT28对干旱胁迫的响应[J]. 中国农业科技导报, 2025, 27(4): 45-56. |
[3] | 董志多, 付秋萍, 黄建, 祁通, 付彦博, 开赛尔·库尔班. 新疆棉花萌发期的耐盐能力分析[J]. 中国农业科技导报, 2025, 27(4): 57-67. |
[4] | 彭梓程, 杜洪力, 王铭, 张凤华, 杨海昌. 丛枝菌根真菌调控盐碱胁迫下棉花生长及离子平衡的研究[J]. 中国农业科技导报, 2025, 27(2): 33-41. |
[5] | 翁慧婷, 刘海洋, 郭惠明, 程红梅, 李君, 张超, 苏晓峰. 棉花抗黄萎病相关基因GhERF020功能的初步分析[J]. 中国农业科技导报, 2024, 26(9): 112-121. |
[6] | 李紫琴, 王家强, 李贞, 邹德秋, 张小功, 罗霄玉, 柳维扬. 基于光谱指数的棉花叶片叶绿素密度估算研究[J]. 中国农业科技导报, 2024, 26(8): 103-111. |
[7] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
[8] | 秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199. |
[9] | 李江博, 高文举, 运晓东, 赵杰银, 耿世伟, 韩春斌, 陈全家, 陈琴. 不同水分胁迫处理对陆地棉核心种质资源的影响[J]. 中国农业科技导报, 2024, 26(3): 26-39. |
[10] | 陈晨, 程大伟, 李兰, 顾红, 郭西智, 李明, 陈锦永. 油菜素内酯调控植物耐盐机理研究进展[J]. 中国农业科技导报, 2024, 26(2): 1-12. |
[11] | 李丽花, 孙正文, 柯会锋, 谷淇深, 吴立强, 张艳, 张桂寅, 王省芬. 陆地棉纤维强度KASP-SNP标记的开发及效应评价[J]. 中国农业科技导报, 2024, 26(2): 46-55. |
[12] | 翟梦华, 孙明辉, 李雪瑞, 徐新龙, 高海洲, 张巨松. 不同株行距配置下缩节胺对棉花株型塑造的影响[J]. 中国农业科技导报, 2024, 26(12): 145-156. |
[13] | 程珍, 牛建龙, 马玉婷, 柳维扬, 蒋学玮, 梁雪齐, 董红强. 1990—2020年南疆阿拉尔垦区棉花物候期的动态变化[J]. 中国农业科技导报, 2024, 26(10): 206-214. |
[14] | 郑德有, 左东云, 王巧莲, 吕丽敏, 程海亮, 顾爱星, 宋国立. 氟节胺与杀菌剂复配防治棉花枯萎病的增效药剂筛选[J]. 中国农业科技导报, 2024, 26(1): 119-124. |
[15] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||