中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (9): 120-130.DOI: 10.13304/j.nykjdb.2024.0188
张海东1(), 唐志贤1, 张立芸1, 于淇1, 宋朝君2(
)
收稿日期:
2024-03-13
接受日期:
2024-05-05
出版日期:
2025-09-15
发布日期:
2025-09-24
通讯作者:
宋朝君
作者简介:
张海东 E-mail:zhd_74@126.com;
基金资助:
Haidong ZHANG1(), Zhixian TANG1, Liyun ZHANG1, Qi YU1, Chaojun SONG2(
)
Received:
2024-03-13
Accepted:
2024-05-05
Online:
2025-09-15
Published:
2025-09-24
Contact:
Chaojun SONG
摘要:
为解决云南林下三七种植中农机具设计缺乏准确、可靠的离散元仿真参数的问题,以云南林下三七种植红壤为研究对象,选取EDEM中的Hertz-Mindlin with JKR cohesion模型,对相关仿真参数进行标定。在前期试验的基础上,采用Plackett-Burman试验和最陡爬坡试验筛选显著性因素及其最优值区间;以土壤仿真堆积角为响应值,分别采用响应面法(response surface methodology,RSM)和机器学习对显著性参数进行优化和对比。结果显示,采用RSM优化得到土壤JKR(Johnson-Kendall-Roberts)表面能为5.597 J·m-2、土壤-土壤碰撞恢复系数为0.314、土壤-土壤滚动摩擦因数为0.132、土壤-65Mn钢碰撞恢复系数为0.264,测得仿真堆积角为38.16°,与实际堆积角相对误差为2.03%;采用GA-BP(genetic algorithm-back propagation)-GA模型优化的土壤JKR表面能为5.245 J·m-2、土壤-土壤碰撞恢复系数为0.404、土壤-土壤滚动摩擦因数为0.171、土壤-65Mn钢碰撞恢复系数为0.318,仿真堆积角为36.81°,与实际堆积角相对误差为1.57%。综上表明,GA-BP-GA算法在参数优化方面优于RSM方法,获得的红壤参数标定结果可以用于离散元仿真。
中图分类号:
张海东, 唐志贤, 张立芸, 于淇, 宋朝君. 基于GA-BP-GA优化林下三七种植红壤离散元仿真参数[J]. 中国农业科技导报, 2025, 27(9): 120-130.
Haidong ZHANG, Zhixian TANG, Liyun ZHANG, Qi YU, Chaojun SONG. Optimization of Discrete Elemental Simulation Parameters for Forest Panax pseudoginseng Plantation Red Soil Based on GA-BP-GA[J]. Journal of Agricultural Science and Technology, 2025, 27(9): 120-130.
级别Grade | D:粒径Particle diameter/mm | 占比Percentage/% |
---|---|---|
1 | D>2.5 | 31.34 |
2 | 2.5≤D>2.0 | 8.78 |
3 | 2.0≤D>1.6 | 8.16 |
4 | 1.6≤D>1.0 | 21.47 |
5 | 1.0≤D>0.6 | 21.29 |
6 | D<0.6 | 8.96 |
表1 土壤粒径分级标准及其占比
Table 1 Soil particle size classification criteria and percentage
级别Grade | D:粒径Particle diameter/mm | 占比Percentage/% |
---|---|---|
1 | D>2.5 | 31.34 |
2 | 2.5≤D>2.0 | 8.78 |
3 | 2.0≤D>1.6 | 8.16 |
4 | 1.6≤D>1.0 | 21.47 |
5 | 1.0≤D>0.6 | 21.29 |
6 | D<0.6 | 8.96 |
序号 Serial number | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | 堆积角 Stacking angle/(°) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.15 | 1.16 | 0.05 | 0.60 | 0.60 | 0.04 | 1 | 1 | 1 | -1 | 10.07 |
2 | 12 | 0.15 | 1.16 | 0.25 | 0.04 | 0.60 | 0.20 | 1 | -1 | -1 | -1 | 67.28 |
3 | 12 | 0.75 | 1.16 | 0.05 | 0.04 | 0.40 | 0.20 | -1 | 1 | 1 | -1 | 27.25 |
4 | 12 | 0.75 | 0.44 | 0.25 | 0.60 | 0.60 | 0.04 | -1 | -1 | 1 | -1 | 58.59 |
5 | 0 | 0.75 | 1.16 | 0.05 | 0.60 | 0.60 | 0.20 | -1 | -1 | -1 | 1 | 3.43 |
6 | 12 | 0.15 | 0.44 | 0.05 | 0.60 | 0.40 | 0.20 | 1 | -1 | 1 | 1 | 67.02 |
7 | 12 | 0.15 | 1.16 | 0.25 | 0.60 | 0.40 | 0.04 | -1 | 1 | -1 | 1 | 69.51 |
8 | 12 | 0.75 | 0.44 | 0.05 | 0.04 | 0.60 | 0.04 | 1 | 1 | -1 | 1 | 31.21 |
9 | 0 | 0.15 | 0.44 | 0.05 | 0.04 | 0.40 | 0.04 | -1 | -1 | -1 | -1 | 4.95 |
10 | 0 | 0.75 | 1.16 | 0.25 | 0.04 | 0.40 | 0.04 | 1 | -1 | 1 | 1 | 3.58 |
11 | 0 | 0.75 | 0.44 | 0.25 | 0.60 | 0.40 | 0.20 | 1 | 1 | -1 | -1 | 12.02 |
12 | 0 | 0.15 | 0.44 | 0.25 | 0.04 | 0.60 | 0.20 | -1 | 1 | 1 | 1 | 30.03 |
表2 Plackett-Burman方案及结果
Table 2 Plackett-Burman program and result
序号 Serial number | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | 堆积角 Stacking angle/(°) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.15 | 1.16 | 0.05 | 0.60 | 0.60 | 0.04 | 1 | 1 | 1 | -1 | 10.07 |
2 | 12 | 0.15 | 1.16 | 0.25 | 0.04 | 0.60 | 0.20 | 1 | -1 | -1 | -1 | 67.28 |
3 | 12 | 0.75 | 1.16 | 0.05 | 0.04 | 0.40 | 0.20 | -1 | 1 | 1 | -1 | 27.25 |
4 | 12 | 0.75 | 0.44 | 0.25 | 0.60 | 0.60 | 0.04 | -1 | -1 | 1 | -1 | 58.59 |
5 | 0 | 0.75 | 1.16 | 0.05 | 0.60 | 0.60 | 0.20 | -1 | -1 | -1 | 1 | 3.43 |
6 | 12 | 0.15 | 0.44 | 0.05 | 0.60 | 0.40 | 0.20 | 1 | -1 | 1 | 1 | 67.02 |
7 | 12 | 0.15 | 1.16 | 0.25 | 0.60 | 0.40 | 0.04 | -1 | 1 | -1 | 1 | 69.51 |
8 | 12 | 0.75 | 0.44 | 0.05 | 0.04 | 0.60 | 0.04 | 1 | 1 | -1 | 1 | 31.21 |
9 | 0 | 0.15 | 0.44 | 0.05 | 0.04 | 0.40 | 0.04 | -1 | -1 | -1 | -1 | 4.95 |
10 | 0 | 0.75 | 1.16 | 0.25 | 0.04 | 0.40 | 0.04 | 1 | -1 | 1 | 1 | 3.58 |
11 | 0 | 0.75 | 0.44 | 0.25 | 0.60 | 0.40 | 0.20 | 1 | 1 | -1 | -1 | 12.02 |
12 | 0 | 0.15 | 0.44 | 0.25 | 0.04 | 0.60 | 0.20 | -1 | 1 | 1 | 1 | 30.03 |
因素 Factor | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
X1 | 5 495.09 | 7 | 1 105.77 | 203.96 | 0.000 1** |
X2 | 1 059.76 | 1 | 5 495.09 | 39.33 | 0.003 3** |
X3 | 42.98 | 1 | 1 059.76 | 1.60 | 0.275 2 |
X4 | 785.38 | 1 | 42.98 | 29.15 | 0.005 7** |
X5 | 264.52 | 1 | 785.38 | 9.82 | 0.035 1* |
X6 | 22.09 | 1 | 264.52 | 0.82 | 0.416 4 |
X7 | 70.62 | 1 | 22.09 | 2.62 | 0.180 8 |
表3 Plackett-Burman试验显著性分析
Table 3 Plackett-Burman test significance analysis
因素 Factor | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
X1 | 5 495.09 | 7 | 1 105.77 | 203.96 | 0.000 1** |
X2 | 1 059.76 | 1 | 5 495.09 | 39.33 | 0.003 3** |
X3 | 42.98 | 1 | 1 059.76 | 1.60 | 0.275 2 |
X4 | 785.38 | 1 | 42.98 | 29.15 | 0.005 7** |
X5 | 264.52 | 1 | 785.38 | 9.82 | 0.035 1* |
X6 | 22.09 | 1 | 264.52 | 0.82 | 0.416 4 |
X7 | 70.62 | 1 | 22.09 | 2.62 | 0.180 8 |
序号 Serial number | X1 | X2 | X4 | X5 | 堆积角 Stacking angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
1 | 0.00 | 0.75 | 0.05 | 0.04 | 1.53 | 95.91 |
2 | 3.00 | 0.60 | 0.10 | 0.18 | 13.44 | 64.06 |
3 | 6.00 | 0.45 | 0.15 | 0.32 | 37.71 | 0.82 |
4 | 9.00 | 0.30 | 0.20 | 0.46 | 53.63 | 43.40 |
5 | 12.00 | 0.15 | 0.25 | 0.60 | 65.68 | 75.60 |
表4 最陡爬坡试验及结果
Table 4 Steepest slope test and result
序号 Serial number | X1 | X2 | X4 | X5 | 堆积角 Stacking angle/(°) | 相对误差 Relative error/% |
---|---|---|---|---|---|---|
1 | 0.00 | 0.75 | 0.05 | 0.04 | 1.53 | 95.91 |
2 | 3.00 | 0.60 | 0.10 | 0.18 | 13.44 | 64.06 |
3 | 6.00 | 0.45 | 0.15 | 0.32 | 37.71 | 0.82 |
4 | 9.00 | 0.30 | 0.20 | 0.46 | 53.63 | 43.40 |
5 | 12.00 | 0.15 | 0.25 | 0.60 | 65.68 | 75.60 |
序号Serial number | 堆积角Stacking angle/(°) | ||||
---|---|---|---|---|---|
1 | 6.00 | 0.45 | 0.15 | 0.32 | 34.30 |
2 | 6.00 | 0.60 | 0.20 | 0.32 | 31.68 |
3 | 3.00 | 0.45 | 0.20 | 0.32 | 26.11 |
4 | 6.00 | 0.30 | 0.10 | 0.32 | 35.36 |
5 | 9.00 | 0.45 | 0.15 | 0.46 | 47.32 |
6 | 3.00 | 0.45 | 0.15 | 0.46 | 26.09 |
7 | 9.00 | 0.45 | 0.15 | 0.18 | 50.23 |
8 | 3.00 | 0.30 | 0.15 | 0.32 | 26.72 |
9 | 6.00 | 0.45 | 0.15 | 0.32 | 34.02 |
10 | 9.00 | 0.45 | 0.10 | 0.32 | 45.02 |
11 | 3.00 | 0.60 | 0.15 | 0.46 | 26.70 |
12 | 3.00 | 0.45 | 0.10 | 0.46 | 30.15 |
13 | 3.00 | 0.30 | 0.15 | 0.18 | 42.72 |
14 | 3.00 | 0.45 | 0.15 | 0.32 | 43.02 |
15 | 3.00 | 0.60 | 0.10 | 0.32 | 20.01 |
16 | 9.00 | 0.30 | 0.15 | 0.32 | 53.97 |
17 | 6.00 | 0.45 | 0.20 | 0.18 | 46.41 |
18 | 6.00 | 0.30 | 0.20 | 0.32 | 47.36 |
19 | 6.00 | 0.45 | 0.20 | 0.46 | 36.37 |
20 | 3.00 | 0.45 | 0.15 | 0.18 | 21.70 |
21 | 6.00 | 0.60 | 0.15 | 0.18 | 26.43 |
22 | 9.00 | 0.45 | 0.20 | 0.32 | 49.15 |
23 | 3.00 | 0.45 | 0.10 | 0.32 | 13.01 |
24 | 6.00 | 0.45 | 0.10 | 0.18 | 26.22 |
25 | 6.00 | 0.30 | 0.15 | 0.46 | 39.25 |
26 | 3.00 | 0.60 | 0.15 | 0.32 | 15.41 |
27 | 6.00 | 0.45 | 0.15 | 0.32 | 37.34 |
28 | 6.00 | 0.45 | 0.15 | 0.32 | 36.11 |
29 | 9.00 | 0.60 | 0.15 | 0.32 | 42.51 |
表5 二次正交旋转组合试验及结果
Table 5 Orthogonal quadratic rotatable combination experiment and result
序号Serial number | 堆积角Stacking angle/(°) | ||||
---|---|---|---|---|---|
1 | 6.00 | 0.45 | 0.15 | 0.32 | 34.30 |
2 | 6.00 | 0.60 | 0.20 | 0.32 | 31.68 |
3 | 3.00 | 0.45 | 0.20 | 0.32 | 26.11 |
4 | 6.00 | 0.30 | 0.10 | 0.32 | 35.36 |
5 | 9.00 | 0.45 | 0.15 | 0.46 | 47.32 |
6 | 3.00 | 0.45 | 0.15 | 0.46 | 26.09 |
7 | 9.00 | 0.45 | 0.15 | 0.18 | 50.23 |
8 | 3.00 | 0.30 | 0.15 | 0.32 | 26.72 |
9 | 6.00 | 0.45 | 0.15 | 0.32 | 34.02 |
10 | 9.00 | 0.45 | 0.10 | 0.32 | 45.02 |
11 | 3.00 | 0.60 | 0.15 | 0.46 | 26.70 |
12 | 3.00 | 0.45 | 0.10 | 0.46 | 30.15 |
13 | 3.00 | 0.30 | 0.15 | 0.18 | 42.72 |
14 | 3.00 | 0.45 | 0.15 | 0.32 | 43.02 |
15 | 3.00 | 0.60 | 0.10 | 0.32 | 20.01 |
16 | 9.00 | 0.30 | 0.15 | 0.32 | 53.97 |
17 | 6.00 | 0.45 | 0.20 | 0.18 | 46.41 |
18 | 6.00 | 0.30 | 0.20 | 0.32 | 47.36 |
19 | 6.00 | 0.45 | 0.20 | 0.46 | 36.37 |
20 | 3.00 | 0.45 | 0.15 | 0.18 | 21.70 |
21 | 6.00 | 0.60 | 0.15 | 0.18 | 26.43 |
22 | 9.00 | 0.45 | 0.20 | 0.32 | 49.15 |
23 | 3.00 | 0.45 | 0.10 | 0.32 | 13.01 |
24 | 6.00 | 0.45 | 0.10 | 0.18 | 26.22 |
25 | 6.00 | 0.30 | 0.15 | 0.46 | 39.25 |
26 | 3.00 | 0.60 | 0.15 | 0.32 | 15.41 |
27 | 6.00 | 0.45 | 0.15 | 0.32 | 37.34 |
28 | 6.00 | 0.45 | 0.15 | 0.32 | 36.11 |
29 | 9.00 | 0.60 | 0.15 | 0.32 | 42.51 |
方差来源 Source of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 3 191.26 | 14 | 227.950 0 | 33.880 0 | <0.000 1** |
X1 | 2 111.52 | 1 | 2 111.520 0 | 313.800 0 | <0.000 1** |
X2 | 569.11 | 1 | 569.110 0 | 84.580 0 | <0.000 1** |
X4 | 377.55 | 1 | 377.550 0 | 56.110 0 | <0.000 1** |
X5 | 5.12 | 1 | 5.120 0 | 0.761 2 | 0.397 7 |
X1X2 | 0.01 | 1 | 0.006 0 | 0.000 9 | 0.976 6 |
X1X4 | 20.14 | 1 | 20.140 0 | 2.990 0 | 0.105 6 |
X1X5 | 13.32 | 1 | 13.320 0 | 1.980 0 | 0.181 2 |
X2X4 | 0.03 | 1 | 0.028 9 | 0.004 3 | 0.948 7 |
X2X5 | 3.51 | 1 | 3.510 0 | 0.521 1 | 0.482 3 |
X4X5 | 48.76 | 1 | 48.760 0 | 7.250 0 | 0.017 5* |
X12 | 3.53 | 1 | 3.530 0 | 0.524 3 | 0.480 9 |
X22 | 22.83 | 1 | 22.830 0 | 3.390 0 | 0.086 7 |
X42 | 26.86 | 1 | 26.860 0 | 3.990 0 | 0.065 5 |
X52 | 1.26 | 1 | 1.260 0 | 0.187 7 | 0.671 4 |
残差Residua | 94.20 | 14 | 6.730 0 | ||
失拟项Lack of fit | 40.93 | 10 | 4.090 0 | 0.307 3 | 0.940 7 |
纯误差Pure error | 53.27 | 4 | 13.320 0 | ||
总和Sum | 3 285.46 | 28 |
表6 回归模型方差分析
Table 6 Analysis of variance for regression models
方差来源 Source of variation | 平方和 Sum of square | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 3 191.26 | 14 | 227.950 0 | 33.880 0 | <0.000 1** |
X1 | 2 111.52 | 1 | 2 111.520 0 | 313.800 0 | <0.000 1** |
X2 | 569.11 | 1 | 569.110 0 | 84.580 0 | <0.000 1** |
X4 | 377.55 | 1 | 377.550 0 | 56.110 0 | <0.000 1** |
X5 | 5.12 | 1 | 5.120 0 | 0.761 2 | 0.397 7 |
X1X2 | 0.01 | 1 | 0.006 0 | 0.000 9 | 0.976 6 |
X1X4 | 20.14 | 1 | 20.140 0 | 2.990 0 | 0.105 6 |
X1X5 | 13.32 | 1 | 13.320 0 | 1.980 0 | 0.181 2 |
X2X4 | 0.03 | 1 | 0.028 9 | 0.004 3 | 0.948 7 |
X2X5 | 3.51 | 1 | 3.510 0 | 0.521 1 | 0.482 3 |
X4X5 | 48.76 | 1 | 48.760 0 | 7.250 0 | 0.017 5* |
X12 | 3.53 | 1 | 3.530 0 | 0.524 3 | 0.480 9 |
X22 | 22.83 | 1 | 22.830 0 | 3.390 0 | 0.086 7 |
X42 | 26.86 | 1 | 26.860 0 | 3.990 0 | 0.065 5 |
X52 | 1.26 | 1 | 1.260 0 | 0.187 7 | 0.671 4 |
残差Residua | 94.20 | 14 | 6.730 0 | ||
失拟项Lack of fit | 40.93 | 10 | 4.090 0 | 0.307 3 | 0.940 7 |
纯误差Pure error | 53.27 | 4 | 13.320 0 | ||
总和Sum | 3 285.46 | 28 |
节点数目 Number of nodes | 均方误差 Mean square error |
---|---|
3 | 0.241 99 |
4 | 0.114 55 |
5 | 4.357 10 |
6 | 0.104 38 |
7 | 0.144 82 |
8 | 0.228 22 |
9 | 1.453 40 |
10 | 0.201 95 |
11 | 0.010 72 |
12 | 0.317 42 |
13 | 1.939 60 |
表7 训练集均方误差
Table 7 Mean square error of the training set
节点数目 Number of nodes | 均方误差 Mean square error |
---|---|
3 | 0.241 99 |
4 | 0.114 55 |
5 | 4.357 10 |
6 | 0.104 38 |
7 | 0.144 82 |
8 | 0.228 22 |
9 | 1.453 40 |
10 | 0.201 95 |
11 | 0.010 72 |
12 | 0.317 42 |
13 | 1.939 60 |
[1] | 张川.基于土壤重构的云南红壤复合土力学特性及影响机制研究[D].徐州:中国矿业大学,2023. |
ZHANG C. Study on the mechanical properties and mechanisms during soil reconstruction of red soil complex in Yunnan [D]. Xuzhou: China University of Mining and Technology, 2023. | |
[2] | 邢洁洁,张锐,吴鹏,等.海南热区砖红壤颗粒离散元仿真模型参数标定[J].农业工程学报,2020,36(5):158-166. |
XING J J, ZHANG R, WU P, et al.. Parameter calibration of discrete element simulation model for latosol particles in hot areas of Hainan province [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(5): 158-166. | |
[3] | 曾智伟,马旭,曹秀龙,等.离散元法在农业工程研究中的应用现状和展望[J].农业机械学报, 2021, 52(4):1-20. |
ZENG Z W, MA X, CAO X L, et al.. Critical review of applications of discrete element method in agricultural engineering [J]. Trans. Chin. Soc. Agric. Mach., 2021, 52(4): 1-20. | |
[4] | 韩燕龙, 贾富国, 唐玉荣, 等.颗粒滚动摩擦系数对堆积特性的影响[J].物理学报,2014,63(17):173-179. |
HAN Y L, JIA F G, TANG Y R, et al.. Influence of granular co efficient of rolling friction on accumulation characteristics [J]. Acta Phys. Sin., 2014, 63(17): 173-179. | |
[5] | 孙景彬,刘琪,杨福增,等.黄土高原坡地土壤与旋耕部件互作离散元仿真参数标定[J].农业机械学报,2022,53(1):63-73. |
SUN J B, LIU Q, YANG F Z, et al.. Calibration of discrete element simulation parameters of sloping soil on Loess Plateau and its interaction with rotary tillage components [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(1): 63-73. | |
[6] | QIU Y Q, GUO Z J, JIN X, et al.. Calibration and verification test of cinnamon soil simulation parameters based on discrete element method [J]. Agriculture, 2022, 12(8):1082-1092. |
[7] | ZHU J, ZOU M, LIU Y, et al.. Measurement and calibration of DEM parameters of lunar soil simulant [J]. Acta Astronaut., 2022, 191: 169-177. |
[8] | 林恒矗,王琪,廖鹏,等.植烟沙壤土与触土部件相互作用的离散元仿真参数标定[J].中国农机化学报,2022,43(5):196-203. |
LIN H C, WANG Q, LIAO P, et al.. Discrete element simulation parameter calibration for the interaction between vegetated sandy loam soil and soil-touching components [J]. J. Chin. Agric. Mech., 2022, 43(5): 196-203. | |
[9] | 宋占华,李浩,闫银发,等.桑园土壤非等径颗粒离散元仿真模型参数标定与试验[J].农业机械学报,2022,53(6):21-33. |
SONG Z H, LI H, YAN Y F, et al.. Calibration method of contact characteristic parameters of soil in mulberry field based on unequal-diameter particles DEM theory [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(6): 21-33. | |
[10] | 向伟,吴明亮,吕江南,等.基于堆积试验的黏壤土仿真物理参数标定[J].农业工程学报,2019,35(12):116-123. |
XIANG W, WU M L, LYU J N, et al.. Calibration of simulation physical parameters of clay loam based on soil accumulation test [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(12): 116-123. | |
[11] | 麻芳兰,黄文波,李尚平,等.广西甘蔗赤红壤离散元模型参数标定[J].农机化研究, 2023, 45(11): 18-26. |
MA F L, HUANG W B, LI S P, et al.. Parameters calibration of discrete element model for latosolic red soil of sugarcane in Guangxi autonomous region [J]. J. Agric. Mech. Res., 2023, 45(11): 18-26. | |
[12] | 马建春,马灶亮,张昊亮,等.补阳还五汤提取工艺的响应面法和人工神经网络模型优化[J].时珍国医国药,2019,30(2):337-340. |
MA J C, MA Z L, ZHANG H L, et al.. Extraction process optimization for Buyanghuanwu decoction by response surface methodology and back propagation artificial neural network [J]. Lishizhen Med. Mater. Med. Res., 2019, 30(2): 337-340. | |
[13] | 丁辛亭,李凯,郝伟,等.基于RSM和GA-BP-GA优化的油茶籽仿真参数标定[J].农业机械学报,2023,54(2):139-150. |
DING X T, LI K, HAO W, et al.. Calibration of simulation parameters of Camellia oleifera seeds based on RSM and GA-BP-GA optimization [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(2): 139-150. | |
[14] | 马文鹏,尤泳,王德成,等.基于RSM和NSGA-Ⅱ的苜蓿种子离散元模型参数标定[J].农业机械学报,2020,51(8):136-144. |
MA W P, YOU Y, WANG D C, et al.. Parameter calibration of alfalfa seed discrete element model based on RSM and NSGA-Ⅱ [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(8): 136-144. | |
[15] | 王洪波,马哲,乌兰图雅,等.采用BP神经网络和Burgers模型的细观参数标定[J].农业工程学报,2022,38(23):152-161. |
WANG H B, MA Z, Wulantuya, et al.. Calibration method of mesoscopic parameters using BP neural network and Burgers model [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38(23): 152-161. | |
[16] | 钟惟亮,丁昊,范立峰.基于BP神经网络的地聚物混凝土细观参数标定研究[J/OL].工程力学,2023:1-10 [2024-01-13].. |
ZHONG W L, DING H, FAN L F. Research on mesoscopic parameters calibration of geopolymer concrete upon BP neural network [J/OL]. Eng. Mech., 2023:1-10 [2024-01-13]. . | |
[17] | 张海辉,张珍,张斯威,等.黄瓜初花期光合速率主要影响因素分析与模型构建[J].农业机械学报,2017,48(6):242-248. |
ZHANG H H, ZHANG Z, ZHANG S W, et al.. Analysis of main influencing factors and modeling of photosynthetic rate for cucumber at initial flowering stage [J]. Trans. Chin. Soc. Agric. Mach., 2017, 48(6): 242-248. | |
[18] | 中华人民共和国住房和城乡建设部. 土工试验方法标准: [S].北京:中国计划出版社,2019. |
[19] | 刘坤宇,苏宏杰,李飞宇,等.基于响应曲面法的土壤离散元模型的参数标定研究[J].中国农机化学报,2021,42(9):143-149. |
LIU K Y, SU H J, LI F Y, et al.. Research on parameter calibration of soil discrete element model based on response surface method [J]. J. Chin. Agric. Mech., 2021, 42(9): 143-149. | |
[20] | 石林榕,赵武云,孙伟.基于离散元的西北旱区农田土壤颗粒接触模型和参数标定[J].农业工程学报,2017,33(21):181-187. |
SHI L R, ZHAO W Y, SUN W. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(21): 181-187. | |
[21] | HÆRVIG J, KLEINHANS U, WIELAND C, et al.. On the adhesive JKR contact and rolling models for reduced particle stiffness discrete element simulations [J]. Powder Technol., 2017, 319: 472-482. |
[22] | 罗帅,袁巧霞, GOUDA Shaban,等.基于JKR粘结模型的蚯蚓粪基质离散元法参数标定[J].农业机械学报,2018,49(4):343-350. |
LUO S, YUAN Q X, GOUDA S B, et al.. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(4): 343-350. | |
[23] | 李清超,郑炫,刘进宝,等.新疆农田粉土离散元仿真参数标定[J].新疆农业科学,2022,59(8):2014-2024. |
LI Q C, ZHENG X, LIU J B, et al.. Parameter calibration of discrete element simulation of farmland silt in Xinjiang [J]. Xinjiang Agric. Sci., 2022, 59(8): 2014-2024. | |
[24] | 薛茂远,梅益,唐方艳,等.基于GA-ELM及遗传算法的注塑件成型工艺优化[J].塑料,2022,51(1):56-61, 66. |
XUE M Y, MEI Y, TANG F Y, et al.. Optimization of injection molding process based on GA-ELM and genetic algorithm [J]. Plastics, 2022, 51(1): 56-61, 66. | |
[25] | BU X, XU Y, ZHAO M, et al.. Simultaneous extraction of polysaccharides and polyphenols from blackcurrant fruits: comparison between response surface methodology and artificial neural networks [J/OL]. Ind. Crops Prod., 2021, 170: 113682 [2024-01-13]. . |
[26] | 杨菊.基于扩展有限元法和离散元法的土壤—耕具接触研究[D].昆明:昆明理工大学,2014. |
YANG J. Analysis of soil-tool interaction using extended finite element method and discrete element method [D]. Kunming: Kunming University of Science and Technology, 2014. | |
[27] | GAMMOUDI N, MABROUK M, BOUHEMDA T, et al.. Modeling and optimization of capsaicin extraction from Capsicum annuum L. using response surface methodology (RSM), artificial neural network (ANN), and Simulink simulation [J/OL]. Ind. Crops Prod., 2021, 171: 113869 [2024-01-13]. . |
[28] | 张曦予,李锐定,莫明规,等.基于人工神经网络耦联遗传算法(BP-GA)优化干酪乳杆菌LTL1361冻干保护剂配方[J].食品工业科技,2022,43(21):175-184. |
ZHANG X Y, LI R D, MO M G, et al.. Optimization of lyophilized protective agent formulation of Lactobacillus casei LTL1361 based on artificial neural network coupled genetic algorithm (BP-GA) [J]. Sci. Technol. Food Ind., 2022, 43(21): 175-184. | |
[29] | 李俊伟,佟金,胡斌,等.不同含水率黏重黑土与触土部件互作的离散元仿真参数标定[J].农业工程学报, 2019, 35(6): 130-140. |
LI J W, TONG J, HU B, et al.. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in NorthEast China [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(6): 130-140. |
[1] | 奚小波, 丁杰源, 张文帝, 史扬杰, 金亦富, 张瑞宏. 一种果园中耕避障除草机的设计与试验[J]. 中国农业科技导报, 2025, 27(7): 101-110. |
[2] | 付硕硕, 龚伟勇, 林逸轩, 李渊顺, 刘澄灿, 倪林. 福建柏叶总二萜提取工艺优化及抑菌活性研究[J]. 中国农业科技导报, 2025, 27(5): 146-155. |
[3] | 苗春霖, 许欢欢, 贾紫毅, 何爱民, 吉洋洋, 牟德华, 高山. 分心木水提物的抗氧化性分析及组分鉴定[J]. 中国农业科技导报, 2025, 27(5): 182-192. |
[4] | 许静, 李晗, 陈平录, 罗江旎, 唐承露, 刘木华. 油茶茶枯离散元模型参数标定与试验[J]. 中国农业科技导报, 2025, 27(3): 112-121. |
[5] | 冯长龙, 宁辰阳, 朱艺鑫, 李树平, 黄春光. 树干绷带环形缠绕机构设计与优化研究[J]. 中国农业科技导报, 2025, 27(3): 122-132. |
[6] | 张如艳, 李绅昊, 朱奇鹏, 冯太纲, 李红波, 邢泽炳, 羡瑜. 生物炭含量对园林绿化废弃物/聚乳酸复合材料物理力学性能影响[J]. 中国农业科技导报, 2025, 27(2): 192-200. |
[7] | 冯长龙, 黄春光, 宁辰阳, 李树平, 陈科锦. 植树机挖坑机构螺旋式钻头性能特性优化研究[J]. 中国农业科技导报, 2025, 27(2): 89-98. |
[8] | 田祥州, 贺福强, 陈发江, 詹璐歆. 基于休止角标定不同含水率木粉离散元参数[J]. 中国农业科技导报, 2025, 27(1): 118-128. |
[9] | 王雪, 郑星, 任佳淼, 赵亚周, 彭文君. 基于Plackett-Burman设计和响应面法优化枣花蜂蜜挥发性成分的萃取条件[J]. 中国农业科技导报, 2025, 27(1): 181-192. |
[10] | 郗婧怡, 王双庆, 白一彤, 姚秀利, 黄碧璇, 李青怡, 范丽清, 黄世臣, 孙明国. 响应面法优化黑水虻处理餐厨垃圾工艺参数研究[J]. 中国农业科技导报, 2025, 27(1): 241-249. |
[11] | 顿国强, 王雷, 纪欣鑫, 姜新波, 赵宇, 郭娜. 金乡紫皮蒜种离散元参数标定与试验验证[J]. 中国农业科技导报, 2024, 26(8): 131-139. |
[12] | 傅丽君, 林潇雨, 林建华, 沈慧男, 吴勇镇. 红松茸牛肉酱加工工艺及货架期研究[J]. 中国农业科技导报, 2024, 26(6): 148-158. |
[13] | 顿国强, 吴星澎, 纪欣鑫, 张福利, 纪文义, 杨永振. 双摆盘式大豆小区排种器的仿真优化[J]. 中国农业科技导报, 2024, 26(6): 82-90. |
[14] | 张岚雄, 郑威, 陈源桉, 沈婧, 邹双全, 伍建榕, 倪林. 樟叶总木脂素提取工艺及其抑菌活性研究[J]. 中国农业科技导报, 2024, 26(5): 138-147. |
[15] | 刘东玲, 司皓, 郑宝江, 张玉红. 响应面法优化酶解辅助-超声提取菥蓂中的黑芥子苷[J]. 中国农业科技导报, 2024, 26(4): 225-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||