








中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (11): 157-170.DOI: 10.13304/j.nykjdb.2023.0755
杨朝阳1,2(
), 徐鹏2,3, 苑铁键2, 李晓琼2(
), 彭冬根1(
), 张振涛2, 杨俊玲2, 丁闯闯2, 朱纪洲4
收稿日期:2023-10-16
接受日期:2024-03-04
出版日期:2024-11-15
发布日期:2024-11-19
通讯作者:
李晓琼,彭冬根
作者简介:杨朝阳 E-mail:953822978@qq.com
基金资助:
Zhaoyang YANG1,2(
), Peng XU2,3, Tiejian YUAN2, Xiaoqiong LI2(
), Donggen PENG1(
), Zhentao ZHANG2, Junling YANG2, Chuangchuang DING2, Jizhou ZHU4
Received:2023-10-16
Accepted:2024-03-04
Online:2024-11-15
Published:2024-11-19
Contact:
Xiaoqiong LI,Donggen PENG
摘要:
杂交构树是一种富含粗蛋白的优质木本饲料资源。为探究杂交构树低温(60、70、80 ℃)传热传质机理及其与品质的关系,对不同铺料厚度(2、3、4 cm)的杂交构树进行热风干燥和真空干燥(真空压力20、40 kPa)试验,测定并分析不同干燥条件对杂交构树干燥特性及干燥品质的影响。结果表明,在相同干燥条件下,杂交构树热风干燥的干燥速率优于真空干燥,热风干燥能够缩短干燥时间的33.3%~46.7%;Page模型为杂交构树低温热风干燥和真空干燥的最佳预测模型;杂交构树明度(L* )受温度和干燥压力影响显著(P<0.05);通过营养指标分析,提出适合杂交构树热风干燥的条件为2 cm、60 ℃,适合真空干燥的条件为2 cm、70 ℃、20 kPa。研究结果为杂交构树的干燥加工提供理论指导。
中图分类号:
杨朝阳, 徐鹏, 苑铁键, 李晓琼, 彭冬根, 张振涛, 杨俊玲, 丁闯闯, 朱纪洲. 杂交构树低温干燥特性及品质研究[J]. 中国农业科技导报, 2024, 26(11): 157-170.
Zhaoyang YANG, Peng XU, Tiejian YUAN, Xiaoqiong LI, Donggen PENG, Zhentao ZHANG, Junling YANG, Chuangchuang DING, Jizhou ZHU. Study on Low Temperature Drying Characteristics and Quality of Hybrid Broussonetia papyrifera[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 157-170.
图1 热风干燥设备注:1—干燥箱; 2—隔板;3—风机;4—电加热器;5—蒸发器;6—压缩机;7—冷凝器风机;8—冷凝器;9—膨胀阀;10—热风气流。
Fig. 1 Hot air drying equipmentNote:1—Drying box;2—Partition board; 3—Fan; 4—Electric heater; 5—Evaporator; 6—Compressor; 7—Condenser fan; 8— Condenser;9—Expansion valve; 10—Hot air flow.
图2 真空干燥系统注:1—热源罐;2—热水泵;3—真空干燥室;4—导热板;5—热交换器;6—冷却水箱;7—真空泵;8—循环水箱。
Fig. 2 Vacuum drying systemNote:1—Heat source tank;2—Hot water pump;3—Vacuum drying chamber;4—Heat conduction plate;5—Heat exchanger;6—Condensate water tank;7—Vacuum pump;8—Circulation water tank.
干燥工况 Drying condition | 干燥工艺 Drying process | 厚度 Thickness/cm | 温度 Temperature/℃ | 压力 Pressure/kPa |
|---|---|---|---|---|
| 1 | 热风干燥HAD | 2 | 60 | 常压 Atmospheric pressure |
| 2 | 70 | |||
| 3 | 80 | |||
| 4 | 3 | 60 | ||
| 5 | 70 | |||
| 6 | 80 | |||
| 7 | 4 | 60 | ||
| 8 | 70 | |||
| 9 | 80 | |||
| 10 | 真空干燥VD | 2 | 60 | 40 |
| 11 | 20 | |||
| 12 | 70 | 40 | ||
| 13 | 20 | |||
| 14 | 80 | 40 | ||
| 15 | 20 |
表1 试验设计
Table 1 Experimental design
干燥工况 Drying condition | 干燥工艺 Drying process | 厚度 Thickness/cm | 温度 Temperature/℃ | 压力 Pressure/kPa |
|---|---|---|---|---|
| 1 | 热风干燥HAD | 2 | 60 | 常压 Atmospheric pressure |
| 2 | 70 | |||
| 3 | 80 | |||
| 4 | 3 | 60 | ||
| 5 | 70 | |||
| 6 | 80 | |||
| 7 | 4 | 60 | ||
| 8 | 70 | |||
| 9 | 80 | |||
| 10 | 真空干燥VD | 2 | 60 | 40 |
| 11 | 20 | |||
| 12 | 70 | 40 | ||
| 13 | 20 | |||
| 14 | 80 | 40 | ||
| 15 | 20 |
干燥模型 Drying model | 模型公式 Formulation |
|---|---|
| A. Sander | MR=exp[-(t/k)a] |
| Henderson and Pabis | MR=a exp(-kt) |
| Logarithmic | MR=a exp(-kt) + b |
| Newton/Lewis | MR=exp(-kt) |
| Page | MR=exp(-kta) |
| Third-degree polynomial model | MR=a+bt+kt2+k0t3 |
表2 干燥模型
Table 2 Drying model
干燥模型 Drying model | 模型公式 Formulation |
|---|---|
| A. Sander | MR=exp[-(t/k)a] |
| Henderson and Pabis | MR=a exp(-kt) |
| Logarithmic | MR=a exp(-kt) + b |
| Newton/Lewis | MR=exp(-kt) |
| Page | MR=exp(-kta) |
| Third-degree polynomial model | MR=a+bt+kt2+k0t3 |
干燥模型 Drying model | 干燥工况 Drying condation | 拟合参数的优度 Goodness of fit paramenter | 模型系数Model coefficient | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 平方误差和SSE/(×10-3) | 决定系数 R2 | 均方根误差RMSE | a | b | k | k0/ (×10-4) | |||
| Page | HAD, 60 ℃, 2 cm | 3.190 | 0.995 6 | 0.023 1 | 1.380 81 | 0.159 78 | |||
| HAD, 70 ℃, 2 cm | 1.800 | 0.997 5 | 0.019 0 | 1.457 87 | 0.213 97 | ||||
| HAD, 80 ℃, 2 cm | 1.220 | 0.998 0 | 0.175 0 | 1.445 46 | 0.242 81 | ||||
| HAD, 60 ℃, 3 cm | 8.350 | 0.990 3 | 0.030 5 | 1.366 16 | 0.079 35 | ||||
| HAD,70 ℃, 3 cm | 2.950 | 0.996 7 | 0.018 1 | 1.234 64 | 0.138 34 | ||||
| HAD, 80 ℃, 3 cm | 1.410 | 0.997 9 | 0.015 3 | 1.286 11 | 0.162 25 | ||||
| HAD, 60 ℃, 4 cm | 1.580 | 0.998 7 | 0.010 6 | 1.174 86 | 0.085 39 | ||||
| HAD, 70 ℃, 4 cm | 1.920 | 0.997 9 | 0.013 9 | 1.196 86 | 0.111 43 | ||||
| HAD, 80 ℃, 4 cm | 1.710 | 0.998 1 | 0.013 8 | 1.220 08 | 0.127 80 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 4.160 | 0.996 0 | 0.019 4 | 1.339 04 | 0.072 20 | ||||
| VD, 60 ℃, 20 kPa, 2 cm | 1.860 | 0.997 5 | 0.015 3 | 1.252 48 | 0.109 96 | ||||
| VD, 70 ℃, 40 kPa, 2 cm | 3.260 | 0.996 4 | 0.019 0 | 1.357 89 | 0.089 78 | ||||
| VD, 70 ℃, 20 kPa, 2 cm | 1.810 | 0.997 7 | 0.015 0 | 1.258 36 | 0.123 95 | ||||
| VD, 80 ℃, 40 kPa, 2 cm | 3.130 | 0.995 6 | 0.021 1 | 1.271 99 | 0.130 40 | ||||
| VD, 80 ℃, 20 kPa, 2 cm | 2.480 | 0.996 8 | 0.018 8 | 1.273 48 | 0.150 06 | ||||
| Logarithmic | HAD, 60 ℃, 2 cm | 0.406 | 0.999 4 | 0.009 01 | 2.097 44 | -1.094 39 | 0.090 84 | ||
| HAD, 70 ℃, 2 cm | 0.387 | 0.999 5 | 0.009 84 | 2.082 71 | -1.076 04 | 0.119 98 | |||
| HAD, 80 ℃, 2 cm | 0.299 | 0.999 5 | 0.009 98 | 2.202 59 | -1.197 10 | 0.121 50 | |||
| HAD, 60 ℃, 3 cm | 0.715 | 0.999 2 | 0.009 45 | 3.127 44 | -2.133 57 | 0.033 46 | |||
| HAD,70 ℃, 3 cm | 0.185 | 0.999 8 | 0.004 81 | 1.455 33 | -0.456 43 | 0.109 97 | |||
| HAD, 80 ℃, 3 cm | 0.261 | 0.999 6 | 0.007 22 | 1.568 38 | -0.562 06 | 0.122 31 | |||
| HAD, 60 ℃, 4 cm | 0.582 | 0.999 5 | 0.006 69 | 1.228 46 | -0.218 93 | 0.088 65 | |||
| HAD, 70 ℃, 4 cm | 0.084 | 0.999 9 | 0.003 05 | 1.326 62 | -0.323 95 | 0.100 87 | |||
| HAD, 80 ℃, 4 cm | 0.190 | 0.999 8 | 0.004 88 | 1.337 43 | -0.331 35 | 0.116 05 | |||
| VD, 60 ℃, 40 kPa, 2 cm | 0.211 | 0.999 8 | 0.004 59 | 1.956 24 | -0.953 00 | 0.052 88 | |||
| VD, 60 ℃, 20 kPa, 2 cm | 0.118 | 0.999 8 | 0.004 10 | 1.636 30 | -0.634 97 | 0.081 48 | |||
| VD, 70 ℃, 40 kPa, 2 cm | 0.252 | 0.999 7 | 0.005 61 | 2.007 24 | -1.002 39 | 0.061 92 | |||
| VD, 70 ℃, 20 kPa, 2 cm | 0.083 | 0.999 9 | 0.003 44 | 1.553 49 | -0.551 42 | 0.096 30 | |||
| VD, 80 ℃, 40 kPa, 2 cm | 0.047 | 0.999 9 | 0.002 81 | 1.763 08 | -0.765 48 | 0.085 81 | |||
| VD, 80 ℃, 20 kPa, 2 cm | 0.012 | 0.999 9 | 0.001 40 | 1.579 12 | -0.578 93 | 0.110 61 | |||
| Lewes | HAD, 60 ℃, 2 cm | 22.810 | 0.968 8 | 0.057 1 | 0.265 94 | ||||
| HAD, 70 ℃, 2 cm | 25.460 | 0.964 8 | 0.065 1 | 0.357 94 | |||||
| HAD, 80 ℃, 2 cm | 19.970 | 0.967 3 | 0.063 2 | 0.380 57 | |||||
| HAD, 60 ℃, 3 cm | 32.630 | 0.962 2 | 0.057 1 | 0.152 00 | |||||
| HAD,70 ℃, 3 cm | 14.620 | 0.983 7 | 0.038 2 | 0.203 06 | |||||
| HAD, 80 ℃, 3 cm | 13.460 | 0.980 3 | 0.043 8 | 0.240 81 | |||||
| HAD, 60 ℃, 4 cm | 12.230 | 0.989 9 | 0.028 6 | 0.122 78 | |||||
| HAD, 70 ℃, 4 cm | 11.450 | 0.987 7 | 0.032 2 | 0.158 81 | |||||
表3 杂交构树干燥动力学拟合结果
Table 3 Results of drying kinetics fitting of hybrid Broussonetia papyrifera
干燥模型 Drying model | 干燥工况 Drying condation | 拟合参数的优度 Goodness of fit paramenter | 模型系数Model coefficient | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 平方误差和SSE/(×10-3) | 决定系数 R2 | 均方根误差RMSE | a | b | k | k0/ (×10-4) | |||
| Page | HAD, 60 ℃, 2 cm | 3.190 | 0.995 6 | 0.023 1 | 1.380 81 | 0.159 78 | |||
| HAD, 70 ℃, 2 cm | 1.800 | 0.997 5 | 0.019 0 | 1.457 87 | 0.213 97 | ||||
| HAD, 80 ℃, 2 cm | 1.220 | 0.998 0 | 0.175 0 | 1.445 46 | 0.242 81 | ||||
| HAD, 60 ℃, 3 cm | 8.350 | 0.990 3 | 0.030 5 | 1.366 16 | 0.079 35 | ||||
| HAD,70 ℃, 3 cm | 2.950 | 0.996 7 | 0.018 1 | 1.234 64 | 0.138 34 | ||||
| HAD, 80 ℃, 3 cm | 1.410 | 0.997 9 | 0.015 3 | 1.286 11 | 0.162 25 | ||||
| HAD, 60 ℃, 4 cm | 1.580 | 0.998 7 | 0.010 6 | 1.174 86 | 0.085 39 | ||||
| HAD, 70 ℃, 4 cm | 1.920 | 0.997 9 | 0.013 9 | 1.196 86 | 0.111 43 | ||||
| HAD, 80 ℃, 4 cm | 1.710 | 0.998 1 | 0.013 8 | 1.220 08 | 0.127 80 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 4.160 | 0.996 0 | 0.019 4 | 1.339 04 | 0.072 20 | ||||
| VD, 60 ℃, 20 kPa, 2 cm | 1.860 | 0.997 5 | 0.015 3 | 1.252 48 | 0.109 96 | ||||
| VD, 70 ℃, 40 kPa, 2 cm | 3.260 | 0.996 4 | 0.019 0 | 1.357 89 | 0.089 78 | ||||
| VD, 70 ℃, 20 kPa, 2 cm | 1.810 | 0.997 7 | 0.015 0 | 1.258 36 | 0.123 95 | ||||
| VD, 80 ℃, 40 kPa, 2 cm | 3.130 | 0.995 6 | 0.021 1 | 1.271 99 | 0.130 40 | ||||
| VD, 80 ℃, 20 kPa, 2 cm | 2.480 | 0.996 8 | 0.018 8 | 1.273 48 | 0.150 06 | ||||
| Logarithmic | HAD, 60 ℃, 2 cm | 0.406 | 0.999 4 | 0.009 01 | 2.097 44 | -1.094 39 | 0.090 84 | ||
| HAD, 70 ℃, 2 cm | 0.387 | 0.999 5 | 0.009 84 | 2.082 71 | -1.076 04 | 0.119 98 | |||
| HAD, 80 ℃, 2 cm | 0.299 | 0.999 5 | 0.009 98 | 2.202 59 | -1.197 10 | 0.121 50 | |||
| HAD, 60 ℃, 3 cm | 0.715 | 0.999 2 | 0.009 45 | 3.127 44 | -2.133 57 | 0.033 46 | |||
| HAD,70 ℃, 3 cm | 0.185 | 0.999 8 | 0.004 81 | 1.455 33 | -0.456 43 | 0.109 97 | |||
| HAD, 80 ℃, 3 cm | 0.261 | 0.999 6 | 0.007 22 | 1.568 38 | -0.562 06 | 0.122 31 | |||
| HAD, 60 ℃, 4 cm | 0.582 | 0.999 5 | 0.006 69 | 1.228 46 | -0.218 93 | 0.088 65 | |||
| HAD, 70 ℃, 4 cm | 0.084 | 0.999 9 | 0.003 05 | 1.326 62 | -0.323 95 | 0.100 87 | |||
| HAD, 80 ℃, 4 cm | 0.190 | 0.999 8 | 0.004 88 | 1.337 43 | -0.331 35 | 0.116 05 | |||
| VD, 60 ℃, 40 kPa, 2 cm | 0.211 | 0.999 8 | 0.004 59 | 1.956 24 | -0.953 00 | 0.052 88 | |||
| VD, 60 ℃, 20 kPa, 2 cm | 0.118 | 0.999 8 | 0.004 10 | 1.636 30 | -0.634 97 | 0.081 48 | |||
| VD, 70 ℃, 40 kPa, 2 cm | 0.252 | 0.999 7 | 0.005 61 | 2.007 24 | -1.002 39 | 0.061 92 | |||
| VD, 70 ℃, 20 kPa, 2 cm | 0.083 | 0.999 9 | 0.003 44 | 1.553 49 | -0.551 42 | 0.096 30 | |||
| VD, 80 ℃, 40 kPa, 2 cm | 0.047 | 0.999 9 | 0.002 81 | 1.763 08 | -0.765 48 | 0.085 81 | |||
| VD, 80 ℃, 20 kPa, 2 cm | 0.012 | 0.999 9 | 0.001 40 | 1.579 12 | -0.578 93 | 0.110 61 | |||
| Lewes | HAD, 60 ℃, 2 cm | 22.810 | 0.968 8 | 0.057 1 | 0.265 94 | ||||
| HAD, 70 ℃, 2 cm | 25.460 | 0.964 8 | 0.065 1 | 0.357 94 | |||||
| HAD, 80 ℃, 2 cm | 19.970 | 0.967 3 | 0.063 2 | 0.380 57 | |||||
| HAD, 60 ℃, 3 cm | 32.630 | 0.962 2 | 0.057 1 | 0.152 00 | |||||
| HAD,70 ℃, 3 cm | 14.620 | 0.983 7 | 0.038 2 | 0.203 06 | |||||
| HAD, 80 ℃, 3 cm | 13.460 | 0.980 3 | 0.043 8 | 0.240 81 | |||||
| HAD, 60 ℃, 4 cm | 12.230 | 0.989 9 | 0.028 6 | 0.122 78 | |||||
| HAD, 70 ℃, 4 cm | 11.450 | 0.987 7 | 0.032 2 | 0.158 81 | |||||
干燥模型 Drying model | 干燥工况 Drying condation | 拟合参数的优度 Goodness of fit paramenter | 模型系数Model coefficient | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 平方误差和SSE/(×10-3) | 决定系数 R2 | 均方根误差RMSE | a | b | k | k0/ (×10-4) | |||
| Lewes | HAD, 80 ℃, 4 cm | 12.670 | 0.986 0 | 0.035 6 | 0.185 08 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 30.370 | 0.970 6 | 0.050 3 | 0.138 11 | |||||
| VD, 60 ℃, 20 kPa, 2 cm | 13.220 | 0.982 0 | 0.038 3 | 0.167 40 | |||||
| VD, 70 ℃, 40 kPa, 2 cm | 27.740 | 0.969 4 | 0.052 6 | 0.166 92 | |||||
| VD, 70 ℃, 20 kPa, 2 cm | 14.200 | 0.982 1 | 0.039 7 | 0.188 29 | |||||
| VD, 80 ℃, 40 kPa, 2 cm | 15.020 | 0.978 8 | 0.043 4 | 0.198 05 | |||||
| VD, 80 ℃, 20 kPa, 2 cm | 15.050 | 0.980 3 | 0.043 4 | 0.225 07 | |||||
| Henderson and Pabis | HAD, 60 ℃, 2 cm | 18.860 | 0.974 2 | 0.056 0 | 1.052 06 | 0.280 83 | |||
| HAD, 70 ℃, 2 cm | 21.730 | 0.969 9 | 0.066 0 | 1.053 60 | 0.376 44 | ||||
| HAD, 80 ℃, 2 cm | 17.310 | 0.971 7 | 0.065 8 | 1.046 01 | 0.398 33 | ||||
| HAD, 60 ℃, 3 cm | 26.910 | 0.968 8 | 0.054 7 | 1.054 21 | 0.162 23 | ||||
| HAD,70 ℃, 3 cm | 11.780 | 0.986 9 | 0.036 2 | 1.040 86 | 0.212 01 | ||||
| HAD, 80 ℃, 3 cm | 10.670 | 0.984 4 | 0.042 2 | 1.043 05 | 0.252 77 | ||||
| HAD, 60 ℃, 4 cm | 8.340 | 0.993 1 | 0.024 4 | 1.040 80 | 0.128 63 | ||||
| HAD, 70 ℃, 4 cm | 8.790 | 0.990 5 | 0.029 6 | 1.037 03 | 0.165 76 | ||||
| HAD, 80 ℃, 4 cm | 9.560 | 0.989 4 | 0.032 6 | 1.041 77 | 0.193 83 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 23.150 | 0.977 6 | 0.045 8 | 1.058 48 | 0.147 74 | ||||
| VD, 60 ℃, 20 kPa, 2 cm | 10.370 | 0.985 9 | 0.036 1 | 1.039 65 | 0.175 80 | ||||
| VD, 70 ℃, 40 kPa, 2 cm | 21.420 | 0.976 4 | 0.048 8 | 1.058 14 | 0.178 30 | ||||
| VD, 70 ℃, 20 kPa, 2 cm | 11.160 | 0.985 9 | 0.037 4 | 1.041 92 | 0.197 59 | ||||
| VD, 80 ℃, 40 kPa, 2 cm | 12.420 | 0.982 5 | 0.042 1 | 1.039 58 | 0.207 54 | ||||
| VD, 80 ℃, 20 kPa, 2 cm | 12.330 | 0.983 8 | 0.042 0 | 1.041 41 | 0.235 55 | ||||
| Third-degree polynomial model | HAD, 60 ℃, 2 cm | 0.402 | 0.999 5 | 0.010 0 | 1.003 40 | -0.191 54 | 0.009 00 | -2.626 38 | |
| HAD, 70 ℃, 2 cm | 0.059 | 0.999 9 | 0.004 44 | 1.001 05 | -0.218 47 | -0.003 82 | 21.500 00 | ||
| HAD, 80 ℃, 2 cm | 0.049 | 0.999 9 | 0.004 93 | 1.000 96 | -0.235 02 | -0.005 97 | 29.800 00 | ||
| HAD, 60 ℃, 3 cm | 0.610 | 0.999 3 | 0.00934 | 0.998 24 | -0.111 97 | 0.003 73 | -1.525 58 | ||
| HAD,70 ℃, 3 cm | 0.140 | 0.999 8 | 0.004 48 | 1.001 22 | -0.164 90 | 0.010 16 | -3.639 05 | ||
| HAD, 80 ℃, 3 cm | 0.212 | 0.999 7 | 0.007 28 | 1.004 00 | -0.184 00 | 0.008 17 | -0.196 88 | ||
| HAD, 60 ℃, 4 cm | 0.529 | 0.999 6 | 0.006 64 | 1.006 94 | -0.105 28 | 0.003 89 | -0.579 12 | ||
| HAD, 70 ℃, 4 cm | 0.077 | 0.999 9 | 0.003 11 | 1.001 05 | -0.130 66 | 0.005 68 | -1.024 05 | ||
| HAD, 80 ℃, 4 cm | 0.174 | 0.999 8 | 0.004 98 | 1.005 39 | -0.153 08 | 0.008 01 | -1.874 45 | ||
| VD, 60 ℃, 40 kPa, 2 cm | 0.074 | 0.999 9 | 0.002 9 | 0.998 30 | -0.096 26 | 0.001 00 | 0.618 73 | ||
| VD, 60 ℃, 20 kPa, 2 cm | 0.039 | 0.999 9 | 0.002 54 | 0.997 73 | -0.125 91 | 0.003 07 | 0.585 90 | ||
| VD, 70 ℃, 40 kPa, 2 cm | 0.040 | 0.999 9 | 0.002 39 | 0.998 83 | -0.113 06 | 0.000 56 | 1.683 43 | ||
| VD, 70 ℃, 20 kPa, 2 cm | 0.014 | 0.999 9 | 0.001 53 | 0.998 76 | -0.141 89 | 0.004 50 | 0.341 37 | ||
| VD, 80 ℃, 40 kPa, 2 cm | 0.037 | 0.999 9 | 0.002 70 | 0.998 88 | -0.154 25 | 0.007 42 | -2.354 61 | ||
| VD, 80 ℃, 20 kPa, 2 cm | 0.012 | 0.999 9 | 0.001 54 | 0.999 72 | -0.173 02 | 0.008 80 | -2.058 89 | ||
表3 杂交构树干燥动力学拟合结果 ( 续表Continued)
Table 3 Results of drying kinetics fitting of hybrid Broussonetia papyrifera
干燥模型 Drying model | 干燥工况 Drying condation | 拟合参数的优度 Goodness of fit paramenter | 模型系数Model coefficient | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 平方误差和SSE/(×10-3) | 决定系数 R2 | 均方根误差RMSE | a | b | k | k0/ (×10-4) | |||
| Lewes | HAD, 80 ℃, 4 cm | 12.670 | 0.986 0 | 0.035 6 | 0.185 08 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 30.370 | 0.970 6 | 0.050 3 | 0.138 11 | |||||
| VD, 60 ℃, 20 kPa, 2 cm | 13.220 | 0.982 0 | 0.038 3 | 0.167 40 | |||||
| VD, 70 ℃, 40 kPa, 2 cm | 27.740 | 0.969 4 | 0.052 6 | 0.166 92 | |||||
| VD, 70 ℃, 20 kPa, 2 cm | 14.200 | 0.982 1 | 0.039 7 | 0.188 29 | |||||
| VD, 80 ℃, 40 kPa, 2 cm | 15.020 | 0.978 8 | 0.043 4 | 0.198 05 | |||||
| VD, 80 ℃, 20 kPa, 2 cm | 15.050 | 0.980 3 | 0.043 4 | 0.225 07 | |||||
| Henderson and Pabis | HAD, 60 ℃, 2 cm | 18.860 | 0.974 2 | 0.056 0 | 1.052 06 | 0.280 83 | |||
| HAD, 70 ℃, 2 cm | 21.730 | 0.969 9 | 0.066 0 | 1.053 60 | 0.376 44 | ||||
| HAD, 80 ℃, 2 cm | 17.310 | 0.971 7 | 0.065 8 | 1.046 01 | 0.398 33 | ||||
| HAD, 60 ℃, 3 cm | 26.910 | 0.968 8 | 0.054 7 | 1.054 21 | 0.162 23 | ||||
| HAD,70 ℃, 3 cm | 11.780 | 0.986 9 | 0.036 2 | 1.040 86 | 0.212 01 | ||||
| HAD, 80 ℃, 3 cm | 10.670 | 0.984 4 | 0.042 2 | 1.043 05 | 0.252 77 | ||||
| HAD, 60 ℃, 4 cm | 8.340 | 0.993 1 | 0.024 4 | 1.040 80 | 0.128 63 | ||||
| HAD, 70 ℃, 4 cm | 8.790 | 0.990 5 | 0.029 6 | 1.037 03 | 0.165 76 | ||||
| HAD, 80 ℃, 4 cm | 9.560 | 0.989 4 | 0.032 6 | 1.041 77 | 0.193 83 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 23.150 | 0.977 6 | 0.045 8 | 1.058 48 | 0.147 74 | ||||
| VD, 60 ℃, 20 kPa, 2 cm | 10.370 | 0.985 9 | 0.036 1 | 1.039 65 | 0.175 80 | ||||
| VD, 70 ℃, 40 kPa, 2 cm | 21.420 | 0.976 4 | 0.048 8 | 1.058 14 | 0.178 30 | ||||
| VD, 70 ℃, 20 kPa, 2 cm | 11.160 | 0.985 9 | 0.037 4 | 1.041 92 | 0.197 59 | ||||
| VD, 80 ℃, 40 kPa, 2 cm | 12.420 | 0.982 5 | 0.042 1 | 1.039 58 | 0.207 54 | ||||
| VD, 80 ℃, 20 kPa, 2 cm | 12.330 | 0.983 8 | 0.042 0 | 1.041 41 | 0.235 55 | ||||
| Third-degree polynomial model | HAD, 60 ℃, 2 cm | 0.402 | 0.999 5 | 0.010 0 | 1.003 40 | -0.191 54 | 0.009 00 | -2.626 38 | |
| HAD, 70 ℃, 2 cm | 0.059 | 0.999 9 | 0.004 44 | 1.001 05 | -0.218 47 | -0.003 82 | 21.500 00 | ||
| HAD, 80 ℃, 2 cm | 0.049 | 0.999 9 | 0.004 93 | 1.000 96 | -0.235 02 | -0.005 97 | 29.800 00 | ||
| HAD, 60 ℃, 3 cm | 0.610 | 0.999 3 | 0.00934 | 0.998 24 | -0.111 97 | 0.003 73 | -1.525 58 | ||
| HAD,70 ℃, 3 cm | 0.140 | 0.999 8 | 0.004 48 | 1.001 22 | -0.164 90 | 0.010 16 | -3.639 05 | ||
| HAD, 80 ℃, 3 cm | 0.212 | 0.999 7 | 0.007 28 | 1.004 00 | -0.184 00 | 0.008 17 | -0.196 88 | ||
| HAD, 60 ℃, 4 cm | 0.529 | 0.999 6 | 0.006 64 | 1.006 94 | -0.105 28 | 0.003 89 | -0.579 12 | ||
| HAD, 70 ℃, 4 cm | 0.077 | 0.999 9 | 0.003 11 | 1.001 05 | -0.130 66 | 0.005 68 | -1.024 05 | ||
| HAD, 80 ℃, 4 cm | 0.174 | 0.999 8 | 0.004 98 | 1.005 39 | -0.153 08 | 0.008 01 | -1.874 45 | ||
| VD, 60 ℃, 40 kPa, 2 cm | 0.074 | 0.999 9 | 0.002 9 | 0.998 30 | -0.096 26 | 0.001 00 | 0.618 73 | ||
| VD, 60 ℃, 20 kPa, 2 cm | 0.039 | 0.999 9 | 0.002 54 | 0.997 73 | -0.125 91 | 0.003 07 | 0.585 90 | ||
| VD, 70 ℃, 40 kPa, 2 cm | 0.040 | 0.999 9 | 0.002 39 | 0.998 83 | -0.113 06 | 0.000 56 | 1.683 43 | ||
| VD, 70 ℃, 20 kPa, 2 cm | 0.014 | 0.999 9 | 0.001 53 | 0.998 76 | -0.141 89 | 0.004 50 | 0.341 37 | ||
| VD, 80 ℃, 40 kPa, 2 cm | 0.037 | 0.999 9 | 0.002 70 | 0.998 88 | -0.154 25 | 0.007 42 | -2.354 61 | ||
| VD, 80 ℃, 20 kPa, 2 cm | 0.012 | 0.999 9 | 0.001 54 | 0.999 72 | -0.173 02 | 0.008 80 | -2.058 89 | ||
干燥模型 Drying model | 干燥工况 Drying condation | 拟合参数的优度 Goodness of fit paramenter | 模型系数Model coefficient | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 平方误差和SSE/(×10-3) | 决定系数 R2 | 均方根误差RMSE | a | b | k | k0/ (×10-4) | |||
| A. Sande | HAD, 60 ℃, 2 cm | 3.190 | 0.995 6 | 0.023 1 | 1.380 86 | 3.774 03 | |||
| HAD, 70 ℃, 2 cm | 1.800 | 0.997 5 | 0.019 0 | 1.458 42 | 2.879 60 | ||||
| HAD, 80 ℃, 2 cm | 1.220 | 0.998 0 | 0.017 4 | 1.445 88 | 2.662 52 | ||||
| HAD, 60 ℃, 3 cm | 8.350 | 0.990 3 | 0.030 5 | 1.368 20 | 6.389 19 | ||||
| HAD,70 ℃, 3 cm | 2.950 | 0.996 7 | 0.018 1 | 1.235 14 | 4.963 45 | ||||
| HAD, 80 ℃, 3 cm | 1.410 | 0.997 9 | 0.015 3 | 1.286 64 | 4.112 37 | ||||
| HAD, 60 ℃, 4 cm | 1.580 | 0.998 7 | 0.010 6 | 1.175 30 | 8.119 44 | ||||
| HAD, 70 ℃, 4 cm | 1.920 | 0.997 9 | 0.013 9 | 1.197 38 | 6.255 46 | ||||
| HAD, 80 ℃, 4 cm | 1.710 | 0.998 1 | 0.013 8 | 1.220 66 | 5.398 91 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 4.160 | 0.996 0 | 0.019 4 | 1.339 04 | 7.119 51 | ||||
| VD, 60 ℃, 20 kPa, 2 cm | 1.860 | 0.997 5 | 0.015 3 | 1.253 16 | 5.827 04 | ||||
| VD, 70 ℃, 40 kPa, 2 cm | 3.260 | 0.996 4 | 0.019 0 | 1.359 05 | 5.900 30 | ||||
| VD, 70 ℃, 20 kPa, 2 cm | 1.810 | 0.997 7 | 0.015 0 | 1.259 05 | 5.254 80 | ||||
| VD, 80 ℃, 40 kPa, 2 cm | 3.130 | 0.995 6 | 0.021 1 | 1.272 92 | 4.960 34 | ||||
| VD, 80 ℃, 20 kPa, 2 cm | 2.480 | 0.996 8 | 0.018 8 | 1.274 27 | 4.434 25 | ||||
表3 杂交构树干燥动力学拟合结果 ( 续表Continued)
Table 3 Results of drying kinetics fitting of hybrid Broussonetia papyrifera
干燥模型 Drying model | 干燥工况 Drying condation | 拟合参数的优度 Goodness of fit paramenter | 模型系数Model coefficient | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 平方误差和SSE/(×10-3) | 决定系数 R2 | 均方根误差RMSE | a | b | k | k0/ (×10-4) | |||
| A. Sande | HAD, 60 ℃, 2 cm | 3.190 | 0.995 6 | 0.023 1 | 1.380 86 | 3.774 03 | |||
| HAD, 70 ℃, 2 cm | 1.800 | 0.997 5 | 0.019 0 | 1.458 42 | 2.879 60 | ||||
| HAD, 80 ℃, 2 cm | 1.220 | 0.998 0 | 0.017 4 | 1.445 88 | 2.662 52 | ||||
| HAD, 60 ℃, 3 cm | 8.350 | 0.990 3 | 0.030 5 | 1.368 20 | 6.389 19 | ||||
| HAD,70 ℃, 3 cm | 2.950 | 0.996 7 | 0.018 1 | 1.235 14 | 4.963 45 | ||||
| HAD, 80 ℃, 3 cm | 1.410 | 0.997 9 | 0.015 3 | 1.286 64 | 4.112 37 | ||||
| HAD, 60 ℃, 4 cm | 1.580 | 0.998 7 | 0.010 6 | 1.175 30 | 8.119 44 | ||||
| HAD, 70 ℃, 4 cm | 1.920 | 0.997 9 | 0.013 9 | 1.197 38 | 6.255 46 | ||||
| HAD, 80 ℃, 4 cm | 1.710 | 0.998 1 | 0.013 8 | 1.220 66 | 5.398 91 | ||||
| VD, 60 ℃, 40 kPa, 2 cm | 4.160 | 0.996 0 | 0.019 4 | 1.339 04 | 7.119 51 | ||||
| VD, 60 ℃, 20 kPa, 2 cm | 1.860 | 0.997 5 | 0.015 3 | 1.253 16 | 5.827 04 | ||||
| VD, 70 ℃, 40 kPa, 2 cm | 3.260 | 0.996 4 | 0.019 0 | 1.359 05 | 5.900 30 | ||||
| VD, 70 ℃, 20 kPa, 2 cm | 1.810 | 0.997 7 | 0.015 0 | 1.259 05 | 5.254 80 | ||||
| VD, 80 ℃, 40 kPa, 2 cm | 3.130 | 0.995 6 | 0.021 1 | 1.272 92 | 4.960 34 | ||||
| VD, 80 ℃, 20 kPa, 2 cm | 2.480 | 0.996 8 | 0.018 8 | 1.274 27 | 4.434 25 | ||||
干燥工况 Drying condition | 活化能 Ea(kJ·mol-1) | 决定系数 R2 | 拟合方程 Fitting equation |
|---|---|---|---|
| HAD, 2 cm | 18.49 | 0.832 3 | ln(Deff)=-2 224.295 85/T-12.918 55 |
| HAD, 3 cm | 21.45 | 0.991 4 | ln(Deff)=-2 580.006 04/T-11.657 22 |
| HAD, 4 cm | 21.29 | 0.989 9 | ln(Deff)=-2 560.481 51/T-11.399 72 |
| VD, 40 kPa | 16.53 | 0.993 6 | ln(Deff)=-1 988.773 27/T-14.356 74 |
| VD, 20 kPa | 17.20 | 0.984 3 | ln(Deff)=-2 069.290 23/T-14.000 18 |
表4 杂交构树不同工况的Ea 值
Table 4 Ea values under different working conditions of hybrid Broussonetia papyrifera
干燥工况 Drying condition | 活化能 Ea(kJ·mol-1) | 决定系数 R2 | 拟合方程 Fitting equation |
|---|---|---|---|
| HAD, 2 cm | 18.49 | 0.832 3 | ln(Deff)=-2 224.295 85/T-12.918 55 |
| HAD, 3 cm | 21.45 | 0.991 4 | ln(Deff)=-2 580.006 04/T-11.657 22 |
| HAD, 4 cm | 21.29 | 0.989 9 | ln(Deff)=-2 560.481 51/T-11.399 72 |
| VD, 40 kPa | 16.53 | 0.993 6 | ln(Deff)=-1 988.773 27/T-14.356 74 |
| VD, 20 kPa | 17.20 | 0.984 3 | ln(Deff)=-2 069.290 23/T-14.000 18 |
图7 基于Arrhenius关系的ln(Deff)与1/T的拟合关系图A:热风干燥;B:真空干燥。Deff—水分有效扩散系数;T—温度
Fig. 7 Fitting relationship between ln(Deff) and 1/T based on Arrhenius relationA: Hot air drying;B: Vacuum drying. Deff—Water effective diffusion coefficient;T—Temperature
| 干燥工况Drying condition | L* :明度 Lightness | a* :红/绿色度 Red/green degree | b* :黄/蓝色度 Yellow/blue degree | ΔE:色差 Chromatic aberration |
|---|---|---|---|---|
| 新鲜Fresh | 24.72±2.52 d | 2.91±0.48 b | 13.89±1.96 ab | - |
| 60 ℃, 2 cm | 29.28±1.07 a | 3.05±0.26 b | 15.22±0.66 ab | 4.77±1.21 ab |
| 70 ℃, 2 cm | 22.52±0.62 e | 3.04±0.40 b | 12.59±0.32 b | 2.61±0.53 c |
| 80 ℃, 2 cm | 26.98±0.67 c | 4.11±0.67 a | 16.44±2.05 a | 3.74±1.92 abc |
| 60 ℃, 3 cm | 23.66±0.78 de | 2.90±0.18 b | 12.69±0.97 b | 1.71±1.01 c |
| 70 ℃, 3 cm | 26.84±0.67 c | 3.11±0.11 b | 13.68±0.34 b | 2.16±0.67 c |
| 80 ℃, 3 cm | 29.53±1.09 a | 2.97±0.55 b | 14.34±1.48 ab | 5.03±0.82 a |
| 60 ℃, 4 cm | 29.09±0.87 ab | 4.17±0.61 a | 15.03±1.70 ab | 4.87±1.18 ab |
| 70 ℃, 4 cm | 27.94±0.98 abc | 3.14±0.30 b | 14.73±0.45 ab | 3.35±1.04 abc |
| 80 ℃, 4 cm | 27.16±0.19 bc | 3.28±0.70 b | 14.45±1.78 ab | 2.93±0.62 bc |
表5 热风干燥不同参数下杂交构树的颜色
Table 5 Color of hybrid Broussonetia papyrifera underdifferent hot air drying parameters
| 干燥工况Drying condition | L* :明度 Lightness | a* :红/绿色度 Red/green degree | b* :黄/蓝色度 Yellow/blue degree | ΔE:色差 Chromatic aberration |
|---|---|---|---|---|
| 新鲜Fresh | 24.72±2.52 d | 2.91±0.48 b | 13.89±1.96 ab | - |
| 60 ℃, 2 cm | 29.28±1.07 a | 3.05±0.26 b | 15.22±0.66 ab | 4.77±1.21 ab |
| 70 ℃, 2 cm | 22.52±0.62 e | 3.04±0.40 b | 12.59±0.32 b | 2.61±0.53 c |
| 80 ℃, 2 cm | 26.98±0.67 c | 4.11±0.67 a | 16.44±2.05 a | 3.74±1.92 abc |
| 60 ℃, 3 cm | 23.66±0.78 de | 2.90±0.18 b | 12.69±0.97 b | 1.71±1.01 c |
| 70 ℃, 3 cm | 26.84±0.67 c | 3.11±0.11 b | 13.68±0.34 b | 2.16±0.67 c |
| 80 ℃, 3 cm | 29.53±1.09 a | 2.97±0.55 b | 14.34±1.48 ab | 5.03±0.82 a |
| 60 ℃, 4 cm | 29.09±0.87 ab | 4.17±0.61 a | 15.03±1.70 ab | 4.87±1.18 ab |
| 70 ℃, 4 cm | 27.94±0.98 abc | 3.14±0.30 b | 14.73±0.45 ab | 3.35±1.04 abc |
| 80 ℃, 4 cm | 27.16±0.19 bc | 3.28±0.70 b | 14.45±1.78 ab | 2.93±0.62 bc |
| 干燥工况Drying condition | L* :明度 Lightness | a* :红/绿色度 Red/green degree | b* :黄/蓝色度 Yellow/blue degree | ΔE:色差 Chromatic aberration |
|---|---|---|---|---|
| 新鲜Fresh | 19.63±0.31 d | 6.10±0.23 a | 13.51±0.49 c | — |
| 60 ℃, 40 kPa, 2 cm | 27.00±0.19 b | 6.22±0.31 a | 16.01±0.21 ab | 7.80±0.12 b |
| 60 ℃, 20 kPa, 2 cm | 23.69±0.40 c | 6.03±0.91 a | 15.61±0.45 b | 4.64±0.39 c |
| 70 ℃, 40 kPa, 2 cm | 30.48±2.66 a | 6.63±0.27 a | 17.59±0.71 a | 11.61±2.75 a |
| 70 ℃, 20 kPa, 2 cm | 28.85±0.24 ab | 6.57±1.12 a | 17.05±1.80 ab | 10.01±0.95 ab |
| 80 ℃, 40 kPa, 2 cm | 29.09±0.40 a | 6.08±0.34 a | 16.11±0.97 ab | 9.84±0.63 ab |
| 80 ℃, 20 kPa, 2 cm | 29.40±0.78 a | 6.40±0.69 a | 16.46±0.32 ab | 10.23±0.83 a |
表6 真空干燥不同参数下杂交构树的颜色
Table 6 Color of hybrid Broussonetia papyrifera underdifferent vacuum drying parameters
| 干燥工况Drying condition | L* :明度 Lightness | a* :红/绿色度 Red/green degree | b* :黄/蓝色度 Yellow/blue degree | ΔE:色差 Chromatic aberration |
|---|---|---|---|---|
| 新鲜Fresh | 19.63±0.31 d | 6.10±0.23 a | 13.51±0.49 c | — |
| 60 ℃, 40 kPa, 2 cm | 27.00±0.19 b | 6.22±0.31 a | 16.01±0.21 ab | 7.80±0.12 b |
| 60 ℃, 20 kPa, 2 cm | 23.69±0.40 c | 6.03±0.91 a | 15.61±0.45 b | 4.64±0.39 c |
| 70 ℃, 40 kPa, 2 cm | 30.48±2.66 a | 6.63±0.27 a | 17.59±0.71 a | 11.61±2.75 a |
| 70 ℃, 20 kPa, 2 cm | 28.85±0.24 ab | 6.57±1.12 a | 17.05±1.80 ab | 10.01±0.95 ab |
| 80 ℃, 40 kPa, 2 cm | 29.09±0.40 a | 6.08±0.34 a | 16.11±0.97 ab | 9.84±0.63 ab |
| 80 ℃, 20 kPa, 2 cm | 29.40±0.78 a | 6.40±0.69 a | 16.46±0.32 ab | 10.23±0.83 a |
图8 热风干燥条件下杂交构树的营养品质注:同一指标中不同小写字母表示在P<0.05水平差异显著。干燥工况编号同表1。
Fig. 8 Nutritional quality of hybrid Broussonetia papyrifera under hot air drying conditionNote:Different lowercase letters in same index indicate significant differences at P<0.05 level. Number of drying condition is same as Table 1.
图9 真空干燥条件下杂交构树的营养品质注:同一指标中不同小写字母表示在P<0.05水平差异显著。干燥工况编号同表1。
Fig. 9 Nutritional quality of hybrid Broussonetia papyrifera under vacuum drying conditionNote:Different lowercase letters in same index indicate significant differences at P<0.05 level. Number of drying condition is same as Table 1.
| 1 | LIAO S X, DENG Z H, CUI K, et al.. Genetic diversity of Broussonetia papyrifera populations in southwest China [J]. Genet. Mol. Res., 2014, 13(3): 7553-7563. |
| 2 | 李华西.构树及其开发利用[J]. 河北林业, 2007(1): 36-37. |
| 3 | SUN W T, HUANG Y, WU C R, et al.. Addition of lactic acid bacteria can promote the quality and feeding value of Broussonetia papyrifera (Paper Mulberry) silage [J/OL]. Fermentation, 2022, 8(1):25 [2023-09-16]. . |
| 4 | 张红,陈凤鸣,黄兴国,等.构树叶的营养价值及其在动物生产中的应用研究进展[J].动物营养学报,2020,32(9):4086-4092. |
| ZHANG H, CHEN F M, HUANG X G, et al.. Nutritional value of Broussonetia papyrifera leaf and its application in animal production [J]. Chin. J. Anim. Nutr., 2020, 32(9): 4086-4092. | |
| 5 | 陈光吉,熊先勤,何润霞,等.全株构树青贮在务川黑牛日粮中饲用价值评价[J].中国农业科学,2021,54(19):4218-4228. |
| CHEN G J, XIONG X Q, HE R X, et al.. Evaluation of feeding value for whole Broussonetia papyrifera silage in diet of Wuchuan black beef cattle [J]. Sci. Agric. Sin., 2021, 54(19): 4218-4228. | |
| 6 | XIONG Y, GUO C Z, WANG L, et al.. Effects of paper mulberry silage on the growth performance, rumen microbiota and muscle fatty acid composition in Hu lambs [J/OL]. Fermentation, 2021, 7(4):286 [2023-09-16]. . |
| 7 | FARAHMANDFAR R, TIRGARIAN B, DEHGHAN B, et al.. Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders [J]. J. Food Meas. Chract., 2020, 14(2): 862-875. |
| 8 | NGUYEN V T, VUONG Q V, BOWYER M C, et al.. Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus [J]. Dry. Technol., 2015, 33(8):1006-1017. |
| 9 | 路明德. 发展稻谷机械烘干 减少自然晾晒损失[J]. 民营科技, 2017(1):262, 265. |
| 10 | 陈亮. 农产品干燥新工艺发展[J]. 山西农经, 2017(16): 35-36. |
| 11 | ORIKASA T, WU L, SHIINA T, et al.. Drying characteristicsof kiwifruit during hot air drying [J]. J. Food Eng., 2008, 85(2): 303-308. |
| 12 | HAZAL Z C T, SELMA C K, ESRA A, et al.. Ultrasound‐assisted vacuum drying as alternative drying method to increase drying rate and bioactive compounds retention of raspberry [J/OL]. J. Food Process. Pres., 2021, 45(12):e16044 [2023-09-16]. . |
| 13 | 陶盛昌,李文佳,邱健健, 等. 食药用真菌干燥技术研究进展[J].保鲜与加工,2019,19 (1):171-178. |
| TAO S C, LI W J, QIU J J, et al.. Advances on drying technology of edible-medicinal fungus [J]. Storage Process, 2019, 19 (1):171-178. | |
| 14 | 韩兴鹏. 干燥方式对猴头菇品质及抗氧化活性的影响[D]. 哈尔滨: 东北林业大学,2018. |
| HAN X P. The effect of drying methods on quality and antioxidant activity of Hericium erinaceus [D]. Harbin: Northeast Forestry University, 2018. | |
| 15 | 杨双喜,马尧,张海红,等.干燥方式对黄花菜粉营养、色泽及氨基酸含量的影响[J]. 中国食品学报, 2022, 22(10):232-241. |
| YANG S X, MA Y, ZHANG H H, et al... Effects of drying methods on the nutrition, color and amino acid content of daylily powder [J]. J. Chin. Inst. Food Sci. Technol., 2022, 22(10):232-241. | |
| 16 | 李巧菲,张宏图,彭桂兰,等. 豇豆热风干燥特性及工艺优化[J]. 食品工业科技, 2023, 44(6): 253-260. |
| LI Q F, ZHANG H T, PENG G L, et al.. Hot air drying characteristics and process optimization of cowpea [J]. Sci. Technol. Food Ind., 2023, 44(6): 253-260. | |
| 17 | KIM M, KERR W L. Vacuum-belt drying of rabbiteye blueberry (Vaccinium ashei) slurries: influence of drying conditions on physical and quality properties of blueberry powder [J]. Food Bioproc. Technol., 2013, 6(11): 3227-3237. |
| 18 | 彭小伟,彭雅兰,何旭华,等.不同干燥方式对玉竹干燥动力学特征及品质的影响[J].中南林业科技大学学报,2022,42(11):164-172. |
| PENG X W, PENG Y L, HE X H, et al.. Effects of different drying methods on the drying dynamic characteristics and quality of Polygonatum odoratum [J]. J. Cent. South Univ. For. Technol., 2022, 42(11):164-172. | |
| 19 | 唐亮. 饲粮中构树叶粉对生长肥育猪生产性能、胴体品质、血清生化指标及养分消化率的影响[D]. 南宁: 广西大学, 2008. |
| TANG L. Effect of leaves of Broussonetia papyrifera used in diet on performance, carcess quality, serum biochemical parameters, and apparent digestibility of dietary nutrients in growing-finishing pigs [D]. Nanning: Guangxi University, 2008. | |
| 20 | ZHENG X Z, JIANG Y Y, PAN Z L. Drying and quality characteristics of different components of alfalfa [J/OL]. Agric. Food Sci., 2005, 23(2):19929 [2023-09-16]. . |
| 21 | BILANSKI W K, LEE J H A, HALYK R M. High-temperature drying of alfalfa stems [J]. Can. J. Plant Sci., 1965, 45(5): 471-476. |
| 22 | LEONOR J M, LUIZ C G, MOACIR C E, et al.. Qualidade de grãos de aveia sob secagem intermitente em altas temperaturas quality of oat grains under intermittent drying at high temperatures [J]. Ciência Rural, 2007, 37(5):1268-1273. |
| 23 | 胡亚强, 苑亚, 杨鲁伟,等. 苜蓿薄层干燥特性及颜色和品质[J]. 草业科学, 2022, 39(9): 1861-1868. |
| HU Y Q, YUAN Y, YANG L W, et al.. Study on thin layer drying characteristics and color and quality of alfalfa [J]. Pratac. Sci., 2022, 39(9): 1861-1868. | |
| 24 | 尚平,关亚鹏,张丽媛,等.热风干燥桑叶的干燥特性、活性成分含量及抗氧化能力研究[J].食品研究与开发,2022,43(1):52-59. |
| SHANG P, GUAN Y P, ZHANG L Y, et al.. Study of the drying characteristics, active component content and an-tioxidant capacity of hot-air-drying mulberry leaves [J]. Food Res. Dev., 2022, 43(1):52-59. | |
| 25 | 孟祥绍,党斌,张文刚,等.不同干燥方式对荨麻叶营养成分及抗氧化活性的影响[J].食品工业,2023, 44(8):161-166. |
| MENG X S, DANG B, ZHANG W G, et al.. Effects of different drying methods on nutritional components and antioxidant activity of nettle leaves [J]. Food Ind., 2023, 44(8):161-166. | |
| 26 | 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: [S]. 北京:中国标准出版社,2016. |
| 27 | XU P, PENG X Y, YANG J L, et al.. Effect of vacuum drying and pulsed vacuum drying on drying kinetics and quality of bitter orange (Citrus aurantium L.) slices [J/OL]. J. Food Process. Pres., 2021, 45(12):e16098 [2023-09-16]. . |
| 28 | GUO H L, CHEN Y, XU W, et al.. Assessment of drying kinetics, textural and aroma attributes of Mentha haplocalyx leaves during the hot air thin-layer drying process [J/OL]. Foods, 2022, 11(6):784 [2023-09-16]. . |
| 29 | WANG N, YANG S Y, ZHANG Y F, et al.. Drying kinetics and quality characteristics of daylily dried by mid-infrared [J]. Int. J. Food Eng., 2021, 17(12):969-979. |
| 30 | DOYMAZ I. Thin‐layer drying of spinach leaves in a convective dryer [J]. J. Food Process Eng., 2009, 32(1): 112-125. |
| 31 | XU P, ZHANG Z T, PENG X Y, et al.. Study on vacuum drying kinetics and processing of the Lonicera japonica Thunb. aqueous extracts [J/OL]. LWT, 2022, 167:113868 [2023-09-16]. . |
| 32 | GOMES F P, RESENDE O, SOUSA E P D, et al.. Application of mathematical models and thermodynamic properties in the drying of jambu leaves [J/OL]. Agriculture, 2022, 12(8):1252 [2023-09-16]. . |
| 33 | YANG K W, WANG D, VIDYARTHI S K, et al.. Pulsed vacuum drying of Persimmon slices: drying kinetics, physicochemical properties, microstructure and antioxidant capacity [J/OL]. Plants, 2022, 11(19):2500 [2023-09-16]. . |
| 34 | 肖志明,樊霞,马东霞,等. 饲料中粗蛋白的测定 凯氏定氮法: [S]. 北京:中国标准出版社,2018. |
| 35 | 武润仙,杨林,何一帆,等. 饲料中粗灰分的测定: [S]. 北京:中国标准出版社,2007. |
| 36 | 张凤枰,张芸,张茹,等. 饲料中中性洗涤纤维(NDF)的测定: [S]. 北京:中国标准出版社,2022. |
| 37 | 中华人民共和国农业农村部. 饲料中酸性洗涤纤维的测定: [S]. 北京:中国标准出版社,2022. |
| 38 | SINGH B, PANESAR P S, NANDA V. Utilization of carrot pomace for the preparation of a value added product [J]. World J. Dairy Food Sci., 2006, 1(1): 22-27. |
| 39 | AREPALLY D, RAVULA S R, MALIK G K, et al.. Mathematical modelling, energy and exergy analysis of tomato slices in a mixed mode natural convection solar dryer [J]. Chem. Sci. Int. J., 2017, 20(4): 1-11. |
| 40 | LIU H, JIAO J H, TIAN Y, et al.. Drying kinetics of Pleurotus eryngii slices during hot air drying [J]. Open Phys., 2022, 20(1):265-273. |
| 41 | BUZRUL S. Reassessment of thin-layer drying models for foods:a critical short communication [J/OL]. Processes, 2022, 10(1):118 [2023-09-16]. . |
| 42 | GONELI A L D, NASU A K, GANCEDO R, et al.. Cinética de secagem de folhas de erva baleeira (Cordia verbenacea DC.) [J]. Rev. Bras. Plant. Med., 2014, 16: 434-443. |
| 43 | 于昊. 木质素降解菌的筛选及其产酶条件的优化[D]. 扬州:扬州大学, 2022. |
| YU H. Screening of lignin-degrading bacteria and optimizationof enzyme production conditions [D]. Yangzhou: Yangzhou University, 2022. | |
| 44 | 刘德成. 冷冻-红外分段组合干燥红枣片干燥特性及品质研究[D]. 石河子: 石河子大学, 2022. |
| LIU D C. Study on drying characteristics and quality of sequentialfreeze-infrared drying jujube slices [D]. Shihezi: Shihezi University, 2022. | |
| 45 | AGREGAN R, LORENZO J M, KUMAR M, et al.. Anaerobic digestion of lignocellulose components: challenges and novel approaches [J/OL]. Energies, 2022, 15(22): 8413 [2023-09-16]. . |
| 46 | 杨苏茂,熊康宁,刘兴宜,等.晾晒方式对构树失水速率及饲用价值的影响[J].草业科学,2018,35(5):1170-1178. |
| YANG S M, XIONG K N, LIU X Y, et al.. Effect of different drying methods on water loss rate and nutritional value of Broussonetia papyrifera [J]. Pratac. Sci., 2018, 12(5): 1170-1178. | |
| 47 | 王安娜,王赟,彭小伟,等.不同干燥方式对竹叶花椒叶品质的影响[J].中国农业科学,2023,56(18):3655-3669. |
| WANG A N, WANG Y, PENG X W, et al.. Effects of different drying methods on the quality characteristics of dried Zanthoxylum armatum leaves [J]. Sci. Agric. Sin., 2023, 56(18): 3655-3669. | |
| 48 | 赵哲.颗粒堆积多孔介质干燥过程模拟及试验研究[D]. 西安: 陕西科技大学, 2015. |
| ZHAO Z. Simulation and experimental research on drying of grain packing porous media [D]. Xi’an: Shaanxi University of Science & Technology, 2015. | |
| 49 | TIAN Y T, ZHAO Y T, HUANG J J, et al.. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms [J]. Food Chem., 2016, 197: 714-722. |
| [1] | 陈小伟, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 谢转回, 杨文鑫, 陈倩玲, 高敏, 黄薇. 不同物候期藏绵羊肉品质、营养成分及肉质相关基因表达特征分析[J]. 中国农业科技导报, 2025, 27(7): 161-171. |
| [2] | 宋光永, 郭雅文, 薛婧, 杨克箐, 苏学德, 周龙. 不同肥水处理对7个设施鲜食葡萄果实品质的影响[J]. 中国农业科技导报, 2025, 27(7): 229-240. |
| [3] | 朱燕芳, 常强, 郝燕, 陈海龙. 反光膜对‘阳光玫瑰’果实品质及挥发性物质的影响[J]. 中国农业科技导报, 2025, 27(7): 72-82. |
| [4] | 白世践, 户金鸽. 赤霉素处理对波尔莱特葡萄及葡萄干品质的影响[J]. 中国农业科技导报, 2025, 27(6): 158-169. |
| [5] | 黄娟娟, 张志强, 毛娟, 马宗桓, 陈佰鸿. 不同叶面肥对‘黑比诺’葡萄生长发育和果实品质的影响[J]. 中国农业科技导报, 2025, 27(6): 205-217. |
| [6] | 袁嘉良, 连润楠, 张吴平. 黄花菜花蕾的精准识别与分级方法[J]. 中国农业科技导报, 2025, 27(5): 103-112. |
| [7] | 张文婷, 李阳, 裘实, 路光明, 郭冬姝, 张保龙, 王金彦. 基于CRISPR/Cas9基因编辑技术研究Badh2基因对稻米品质的影响[J]. 中国农业科技导报, 2025, 27(5): 39-48. |
| [8] | 李大荣, 李小玲, 周武先, 张美德, 蒋小刚, 由金文, 王华. 有机肥替代部分化肥对湖北贝母生长及土壤性质的影响[J]. 中国农业科技导报, 2025, 27(3): 216-226. |
| [9] | 赵德轩, 高朋, 温晓蕾, 母时风, 高素红, 冯丽娜, 孙伟明, 齐慧霞. 板栗黄化皱缩病对板栗坚果品质的影响[J]. 中国农业科技导报, 2025, 27(2): 136-140. |
| [10] | 王如月, 虎海防, 罗莎莎, 甄紫怡, 徐业勇, 胡晓静. 杏李不同采收成熟度果实品质分析[J]. 中国农业科技导报, 2025, 27(2): 158-169. |
| [11] | 吴强, 吴聪连, 吴小云, 吴剑, 徐选美, 赖俊声, 胡伟云, 龚榜初, 江锡兵. 不同施肥处理对锥栗产量及果实品质的影响[J]. 中国农业科技导报, 2025, 27(2): 228-237. |
| [12] | 曾宝珍, 成永娟, 杨娟博, 车莉莉, 梁靖, 卢世雄, 梁国平, 马宗桓, 毛娟. 甘肃民勤地区‘慕合怀特’葡萄最佳采收期的确定[J]. 中国农业科技导报, 2025, 27(2): 70-79. |
| [13] | 王婷, 杜婧含, 张光弟, 王江龙, 贾毅男, 王玉, 包文毅. 宁南山区新优甘蓝品种品质及挥发性物质研究[J]. 中国农业科技导报, 2025, 27(1): 165-180. |
| [14] | 赵雅雯, 李绍稳. 农产品质量安全可信追溯体系构建与建议[J]. 中国农业科技导报, 2025, 27(1): 17-24. |
| [15] | 向兰婷, 宋曙辉, 刘立娟, 佘小玲, 周家华, 王宝刚, 常虹, 张超, 傅达奇, 王云香. 不同贮藏温度对京彩1号西瓜品质的影响[J]. 中国农业科技导报, 2024, 26(9): 137-145. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||