








中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (10): 189-197.DOI: 10.13304/j.nykjdb.2023.0023
收稿日期:2023-01-06
接受日期:2023-07-31
出版日期:2023-10-15
发布日期:2023-10-27
作者简介:吴红艳 E-mail:lnwuhy@163.com
基金资助:
Hongyan WU(
), Miao YU, Jian FENG, Hui LIU
Received:2023-01-06
Accepted:2023-07-31
Online:2023-10-15
Published:2023-10-27
摘要:
为探明解磷生物肥(PSWY)对温室土壤磷有效性和辣椒产量的影响,采用室内盆栽试验,设置4个施肥处理:常规施肥(CK)、常规施肥+鸡粪(腐熟)3 000 kg·hm-2(PY1)、常规施肥+PSWY 3 000 kg·hm-2(PY2)、常规施肥+解磷菌P623-9 240 L·hm-2(PY3),在不同时期对土壤有效磷(available phosphorous,AP)、微生物量磷(microbial biomass phosphorus,MBP)含量进行测定,并对辣椒地上部干重、辣椒根系发育及产量进行比较。结果表明,PY1、PY2和PY3处理土壤AP含量平均值较CK分别提高40.9%、73.1%和38.1%,土壤MBP含量与CK相比分别提高23.4%、58.9%和45.4%;辣椒产量表现为PY2>PY1>PY3>CK,PY1、PY2和PY3处理较CK分别增产10.9%、14.5%和7.7%,PY2处理可增加辣椒地上部干重、促进根系发育,与其他3个处理相比均呈现显著性差异(P<0.05);辣椒产量与土壤有效磷含量、土壤解磷菌数量、微生物量磷含量及植株地上部干重呈显著正相关(P<0.01)。综上可知,PSWY能够显著增加土壤有效磷含量,促进辣椒根系发育,增加地上部干重,大幅提高产量,同时减少农业面源污染,研究结果为设施农业可持续发展提供理论依据。
中图分类号:
吴红艳, 于淼, 冯健, 刘晖. 解磷生物肥对温室土壤磷有效性及辣椒产量的影响[J]. 中国农业科技导报, 2023, 25(10): 189-197.
Hongyan WU, Miao YU, Jian FENG, Hui LIU. Effect of Phosphorus Solubilizing Bio-fertilizer on Soil Phosphorus Availability and Pepper Yield in Greenhouse[J]. Journal of Agricultural Science and Technology, 2023, 25(10): 189-197.
| 载体 Vector | 吸水性 Hygroscopy/mL | 有效菌体释放率 Effective thallus release rate/% |
|---|---|---|
| 腐殖酸 Humic acid | 6.4 | 72 |
| 蚯蚓粪 Wormcast | 8.1 | 59 |
| 鸡粪(腐熟) Chicken manure (decomposed) | 7.6 | 85 |
表1 载体吸水性及有效菌体释放率
Table 1 Carrier hydroscopicity and effective cell release rate
| 载体 Vector | 吸水性 Hygroscopy/mL | 有效菌体释放率 Effective thallus release rate/% |
|---|---|---|
| 腐殖酸 Humic acid | 6.4 | 72 |
| 蚯蚓粪 Wormcast | 8.1 | 59 |
| 鸡粪(腐熟) Chicken manure (decomposed) | 7.6 | 85 |
图1 不同载体不同时间下的菌体存活数量注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 1 Survival number of bacteria in different carriers at different timesNote:Different lowercase letters indicate significant difference between treatments at P<0.05 level.
图2 不同施肥处理下土壤解磷菌数量注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 2 Quantity of soil phosphorus solubilizing bacteria in different fertilization treatmentsNote:Different lowercase letters indicate significant difference between treatments at P<0.05 level.
图3 不同施肥处理下土壤有效磷含量注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 3 Soil available phosphorus content under different fertilization treatmentsNote:Different lowercase letters indicate significant difference between treatments at P<0.05 level.
图4 不同施肥处理下土壤微生物量磷含量注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 4 Soil microbial biomass phosphorus content in different fertilization treatmentsNote:Different lowercase letters indicate significant difference between treatments at P<0.05 level.
图5 不同施肥处理下辣椒地上部干重注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 5 Aboveground dry weight of pepper under different fertilization treatmentsNote:Different lowercase letters indicate significant difference between treatments at P<0.05 level.
| 根系 Root system | CK | PY1 | PY2 | PY3 |
|---|---|---|---|---|
| 整根干重 Whole root dry weight/g | 4.213 5±0.167 2 c | 5.436 8±0.079 3 b | 6.826 9±0.101 3 a | 4.420 1±0.203 2 c |
| 根长度 Root length/cm | 24.533 6±1.469 0 c | 25.314 2±1.053 7 bc | 29.300 4±0.516 6 a | 28.466 7±1.215 5 ab |
| 主根直径 Taproot diameter/mm | 7.936 7±0.365 8 c | 8.916 2±0.116 1 b | 9.996 3±0.133 7 a | 8.663 9±0.307 2 bc |
表2 不同施肥处理下辣椒整根干重、长度及主根直径
Table 2 Whole root dry weight, length and taproot diameter of pepper under different fertilization treatments
| 根系 Root system | CK | PY1 | PY2 | PY3 |
|---|---|---|---|---|
| 整根干重 Whole root dry weight/g | 4.213 5±0.167 2 c | 5.436 8±0.079 3 b | 6.826 9±0.101 3 a | 4.420 1±0.203 2 c |
| 根长度 Root length/cm | 24.533 6±1.469 0 c | 25.314 2±1.053 7 bc | 29.300 4±0.516 6 a | 28.466 7±1.215 5 ab |
| 主根直径 Taproot diameter/mm | 7.936 7±0.365 8 c | 8.916 2±0.116 1 b | 9.996 3±0.133 7 a | 8.663 9±0.307 2 bc |
图6 不同施肥处理下的辣椒产量注:不同小写字母表示处理间差异在P<0.05水平显著。
Fig. 6 Pepper yield under different fertilization treatmentsNote:Different lowercase letters indicate significant difference between treatments at P<0.05 level.
| 指标 Index | 土壤有效磷 Soil AP | 辣椒地上部干重 Aboveground dry weight | 辣椒产量 Pepper yield | 土壤解磷菌数量 Soil phosphorus solubiliating bacteria |
|---|---|---|---|---|
| 辣椒地上部干重 Aboveground dry weight | 0.759** | |||
| 辣椒产量 Pepper yield | 0.791** | 0.921** | ||
| 土壤解磷菌数量 Poil phosphorus solubiliating bacteria | 0.799** | 0.814** | 0.924** | |
| 土壤微生物量磷 Soil MBP | 0.927** | 0.899** | 0.860** | 0.787** |
表3 土壤有效磷含量、辣椒地上部干重、辣椒产量、土壤解磷菌数量及微生物量磷的相关性分析
Table 3 Correlation analysis between number of soil phosphorus solubilizing bacteria, soil MBP, plant dry weight, pepper yield and soil AP
| 指标 Index | 土壤有效磷 Soil AP | 辣椒地上部干重 Aboveground dry weight | 辣椒产量 Pepper yield | 土壤解磷菌数量 Soil phosphorus solubiliating bacteria |
|---|---|---|---|---|
| 辣椒地上部干重 Aboveground dry weight | 0.759** | |||
| 辣椒产量 Pepper yield | 0.791** | 0.921** | ||
| 土壤解磷菌数量 Poil phosphorus solubiliating bacteria | 0.799** | 0.814** | 0.924** | |
| 土壤微生物量磷 Soil MBP | 0.927** | 0.899** | 0.860** | 0.787** |
| 1 | 王孝忠. 我国蔬菜生产的环境代价、减排潜力与调控途径[D].北京:中国农业大学,2018. |
| WANG X Z. Environmental impacts,mitigation potentials and management approaches in Chinese vegetable production system [D]. Beijing: China Agricultural University,2018. | |
| 2 | 王连林,张志成,商立军,等.新型微生物功能菌剂的筛选与功能菌肥的研制[J].化肥工业,2019,46( 3): 6-9. |
| WANG L L, ZHANG Z C, SHANG L J,et al.. Screening of new microbial functional bacterial agents and development of functional bacterial fertilizer [J]. Chem. Fert. Ind., 2019,46(3): 6-9. | |
| 3 | 李夏夏,李春钢,姜雄,等.矿物微生物肥料的应用前景[J].化工矿物与加工,2018(6) :63-66. |
| LI X X, LI C G, JIANG X, et al.. Application prospect of mineral microbial fertilizer [J].Ind. Minerals Process., 2018(6): 63-66. | |
| 4 | 张胜男.颗粒微生物肥料的研制及其促生机理研究[D].呼和浩特:内蒙古农业大学,2017. |
| ZHANG S N. Development of granule microbial fertilizer and its effect and mechanism of plant growth-promoting [D]. Hohhot: Inner Mongolia Agricultural University, 2017. | |
| 5 | 王应兰. 解磷微生物细菌的筛选、鉴定及其制备肥料的研究[D].贵阳:贵州大学,2020. |
| WANG Y L. Study on screening and identification of phosphate-solubilizing bacteria and preparation of fertilizers [D]. Guiyang: Guizhou University, 2020. | |
| 6 | 杜雷,陈钢,王素萍,等.解磷菌剂对生菜根际土壤微生物数量和酶活性的影响[J].湖北农业科学,2019,58(11): 70-74. |
| DU L, CHEN G, WANG S P, et al.. Effects of phosphate-solubilizing bacteria on rhizosphere microorganism and enzyme activities of lettuce [J].Hubei Agric. Sci., 2019,58(11): 70-74. | |
| 7 | 胡英宏,任泽广,杨姝钰,等.生物有机肥对菠萝心腐病发生和土壤细菌群落结构的影响[J].应用与环境生物学报, 2022, 28(6): 1444-1451. |
| HU Y H, REN Z G, YANG S Y, et al.. Effects of bio-organic fertilizers on pineapple heart rot and bacterial community structure [J]. Chin. J. Appl. Environ. Biol., 2022, 28(6): 1444-1451. | |
| 8 | 李玉奇,辛世杰,奥岩松.微生物菌肥对温室黄瓜生长、产量及品质的影响[J].中国农学通报,2012,28(1):259-263. |
| LI Y Q, XIN S J, AO Y S. Effects of microbial fertilizers on the growth, yield and quality of cucumber in greenhouse cultivation [J]. Chin. Agric. Sci. Bull., 2012,28(1):259-263. | |
| 9 | 于会丽,徐变变,徐国益,等. 生物有机肥对苹果幼苗生长、生理特性以及土壤微生物功能多样性的影响[J].中国农学通报, 2022,38(1):32-38. |
| YU H L, XU B B, XU G Y, et al.. Effects of bio-organic fertilizer on growth, physiological characteristics of apple seedlings and soil microbial functional diversity [J]. Chin. Agric. Sci. Bull., 2022,38(1):32-38. | |
| 10 | 周通. 草莓枯萎病生防菌的筛选及其生物有机肥研究[D]. 大连:大连理工大学,2018. |
| ZHOU T. Isolation of antagonistic microbe for controlling fusarium wilt of strawberry and study on its fortified bio-organic fertilizer [D]. Dalian: Dalian University of Technology,2018. | |
| 11 | 谢东锋,王国强,谢荣,等.不同微生物菌肥处理连作土壤对黄瓜生长及防御性酶的影响[J].福建农业学报,2018,33(7):696-701. |
| XIE D F, WANG G Q, XIE R, et al.. Effects of microbial fertilizers on growth and defense-related enzymes of continuously cropped cucumbers [J]. Fujian J. Agric. Sci., 2018, 33(7):696-701. | |
| 12 | 苗天瑶.微生物菌剂与秸秆肥结合改良设施栽培土壤的研究[D].长春:吉林农业大学,2017. |
| MIAO T Y. Study on improvement of greenhouse soil by combination of microbial inoculum and straw fertilizer [D]. Changchun: Jilin Agricultural University, 2017. | |
| 13 | ZENG Q W, WU X Q, WEN X Y. Erratum to:identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2,and its plant growth-promoting effects on poplar seedlings [J]. Ann. Microbiol., 2017,67(3):1343-1354. |
| 14 | 赵玥.芽孢杆菌的筛选及在复合菌肥中应用研究[D]. 长春:吉林农业大学,2020. |
| ZHAO Y. Screening of bacillus and its application in compound fertilizer [D]. Changchun: Jilin Agricultural University, 2020. | |
| 15 | 袁芳,张凯,马超,等.有机肥添加对不同磷肥用量新疆棉田磷素状况及棉花产量的影响[J].农业资源与环境学报,2022,39(1):118-128. |
| YUAN F, ZHANG K, MA C, et al.. Effects of organic fertilizer addition on field phosphorus status and yield under different amounts of phosphorus fertilization in cotton field in Xinjiang, China [J]. J. Agric. Resour. Environ., 2022, 39(1): 118-128. | |
| 16 | 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:14-243. |
| 17 | 吴金水,林先贵,贺前锋,等. 土壤微生物生物量的测定熏蒸提取法: [S].北京:中国标准出版社,2020. |
| 18 | 张博凯,郝鲜俊,高文俊,等. 不同有机肥及用量对矿区复垦土壤有效磷含量及供磷特性的影响[J]. 水土保持学报,2021,35(2):271-278. |
| ZHANG B K, HAO X J, GAO W J, et al.. Effects of different organic fertilizers and amounts on available phosphorus content and phosphorus supply characteristics in coal mining reclaimed soil [J]. J. Soil Water Conserv., 2021,35(2):271-278. | |
| 19 | 刘彦伶,李渝,张艳,等. 长期施用磷肥和有机肥黄壤微生物量磷特征[J].中国农业科学,2021,54(6):1188-1198. |
| LIU Y L, LI Y, ZHANG Y, et al.. Characteristics of microbial biomass phosphorus in yellow soil under long-term application of phosphorus and organic fertilizer [J]. Sci. Agric. Sin., 2021,54(6):1188-1198. | |
| 20 | 祁娟,姚拓,白小明,等. 复合菌肥替代部分磷肥对苜蓿草地生产力及土壤肥力的影响[J]. 草业学报, 2017,26(10):118-128. |
| QI J, YAO T, BAI X M, et al.. Impacts on alfalfa productivity and soil fertility of partially replacting phosphate fertilizers with microbial fertilizers [J]. Acta Pratac. Sin., 2017,26(10):118-128. | |
| 21 | 郑淇元,谢意太,卞海洋,等. 溶磷菌肥对红壤磷组分及土壤肥力的影响[J]. 江西农业大学学报, 2022,44(1):233-244. |
| ZHENG Q Y, XIE Y T, BIAN H Y, et al.. Effects of phosphate solubilizing bio-fertilizer on phosphorus fractions and fertility of red soil [J]. Acta Agric. Univ. Jiangxiensis, 2022,44(1):233-244. | |
| 22 | 方华舟,左雪枝.稻田固氮解磷解钾菌筛选及其复合菌剂对土壤培肥作用[J].中国土壤与肥料,2014(2): 82-87. |
| FANG H Z, ZUO X Z. Isolation and application of N-fixing,P-releasing and K-releasing bacteria from rice paddy [J].Soil Fert. Sci. China, 2014(2): 82-87. | |
| 23 | 滕艳敏,韩卉,郝梓依,等.不同蔬菜种植模式对土壤淋溶水总氮、总磷和COD的影响[J].中国生态农业学报,2017,25(5):759-768. |
| TENG Y M, HAN H, HAO Z Y, et al.. Effect of vegetable cropping system on total nitrogen, phosphorus and COD in farmland leachate [J]. Chin. J. Eco-Agric., 2017, 25(5): 759-768. | |
| 24 | GUIÑAZÚ L B, ANDRÉS J A, PAPA M F D. Response of alfalfa Medicago sativa L.to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti [J]. Biol. Fert. Soils, 2010,46:185-190. |
| 25 | HAMEEDA B, HARINI G, RUPELA O P, et al.. Growth promotion of maize by phosphate-solubilizing bacteriaisolated from composts and macrofauna [J]. Microbiol. Res.,2008,163:234-242. |
| 26 | 蒋欣梅,夏秀华,于锡宏,等. 微生物解磷菌肥对大棚茄子生长及土壤有效磷利用的影响[J]. 浙江大学学报(理学版), 2012, 39(6):685-688. |
| JIANG X M, XIA X H, DING X H, et al.. Effects of phosphorus-dissolving microbers fertilizer on growth of eggplant and utilization of available phosphorus in soil in the vinyl tunnel [J]. Acta Agric. Univ. Zhejiangensis (Sci.),2012,39(6):685-688. | |
| 27 | 王秀娟,韩瑛祚,何志刚,等. 微生物菌肥对设施番茄养分吸收与土壤氮磷累积的影响[J]. 北方园艺,2021(19):100-106. |
| WANG X J, HAN Y Z, HE Z G,et al.. Effcts of microbial fertilizer on nutrient uptake of tomato and soil nitrogen and phosphorus accumulation in facilities [J]. Northern Hortic., 2021(19):100-106. | |
| 28 | 苑伟伟,赵阳国,井永苹,等. 一种高效解磷复合菌剂的筛选与应用[J].山东农业科学,2016,48(12) : 86-90. |
| YUAN W W, ZHAO Y G, JING Y P, et al.. Screening and application of an efficient phosphate-solubilizing compound microbial inoculants [J]. Shandong Agric. Sci., 2016,48(12) : 86-90. | |
| 29 | 曾洪玉,李志勇,唐宝国,等. 不同磷肥用量对油菜产量、肥料利用率及土壤养分的影响[J]. 农学学报,2019,9(7):31-36. |
| ZENG H Y, LI Z Y, TANG B G, et al.. Effects of different amounts of phosphate fertilizer on rapeseed yield,fertilizer utilization and soil nutrients [J]. Agric. Sci., 2019,9(7):31-36. | |
| 30 | 任朝辉,田浩,廖卫琴,等. 磷肥不同施用量对辣椒生长农艺性状及产量的影响[J].辣椒杂志,2021(1):10-13. |
| REN C H, TIAN H, LIAO W Q,et al.. Effects of different applications of phosphate fertilizer on agronomic characters and yield of pepper [J]. J. China Capsicum,2021(1):10-13. | |
| 31 | 慧薇,李丽君, 王斌,等. 磷肥对藜麦生长及养分吸收的影响[J]. 山西农业科学,2021,49(4):444-448. |
| HUI W, LI L J, WANG B, et al. Effects of phosphate fertilizer on growth and nutrient accumulation of quinoa [J]. Shanxi Agric. Sci.,2021,49(4):444-448. |
| [1] | 张振飞, 颜安, 郭靖, 赵宇航, 袁以琳, 刘鹏, 曲佐昊, 袁川. 基于无人机遥感的苹果产量估测模型研究[J]. 中国农业科技导报, 2025, 27(9): 110-119. |
| [2] | 张剑峰, 侯文峰, 伍永清, 李凯旭, 李小坤. 氮肥与密度互作对水稻病虫害发生和产量的影响[J]. 中国农业科技导报, 2025, 27(9): 145-154. |
| [3] | 吕彩霞, 李永福, 信会男, 李娜, 赖宁, 耿庆龙, 陈署晃. 缓释氮肥对滴灌冬小麦产量及土壤硝/铵态氮的影响[J]. 中国农业科技导报, 2025, 27(8): 179-186. |
| [4] | 刘雪晴, 王静, 阳宜, 吴慧琴, 王延宏, 王麓尧, 路佳伟, 张凯璇, 翟源, 成妍. 外源乙烯利对色素辣椒脱叶及产量的影响[J]. 中国农业科技导报, 2025, 27(8): 36-46. |
| [5] | 周琦, 刘强, 张靖, 邓超超, 王振龙, 柳洋, 吴芳, 常浩, 周彦芳, 宿翠翠, 施志国, 高正睿, 马凤捷. 有机肥替代化肥对土壤生物学特性及南瓜产量的影响[J]. 中国农业科技导报, 2025, 27(7): 190-203. |
| [6] | 陈士超, 王举, 郭富强, 郝瑞, 石建平. 不同水氮耦合对蛋白桑生理指标及产量的影响[J]. 中国农业科技导报, 2025, 27(6): 240-249. |
| [7] | 吴艳, 邹乐萍, 宋惠洁, 胡丹丹, 柳开楼, 梁万里. 控释氮肥和尿素配施对田面水铵态氮和早稻产量的影响[J]. 中国农业科技导报, 2025, 27(4): 192-200. |
| [8] | 李大荣, 李小玲, 周武先, 张美德, 蒋小刚, 由金文, 王华. 有机肥替代部分化肥对湖北贝母生长及土壤性质的影响[J]. 中国农业科技导报, 2025, 27(3): 216-226. |
| [9] | 吴强, 吴聪连, 吴小云, 吴剑, 徐选美, 赖俊声, 胡伟云, 龚榜初, 江锡兵. 不同施肥处理对锥栗产量及果实品质的影响[J]. 中国农业科技导报, 2025, 27(2): 228-237. |
| [10] | 米春娇, 孙洪仁, 张吉萍, 吕玉才, 张砚迪. 我国番茄土壤有效磷丰缺指标和推荐施磷量初步研究[J]. 中国农业科技导报, 2025, 27(1): 222-232. |
| [11] | 刘婷婷, 郝曦煜, 王辉, 冷静文, 宫世航, 刘伟. 吉林西部半干旱地区不同谷子品种产量与农艺性状的分析[J]. 中国农业科技导报, 2025, 27(1): 50-60. |
| [12] | 石纹碹, 谭金芳, 张倩, 李岚涛, 王宜伦. 一次性施肥对不同生态区夏玉米产量和氮肥效率的影响[J]. 中国农业科技导报, 2024, 26(9): 193-202. |
| [13] | 吴梅, 张金珠, 王振华, 刘健, 温越, 李宣志. 水气互作对膜下滴灌玉米生理生长及产量的影响[J]. 中国农业科技导报, 2024, 26(8): 189-200. |
| [14] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
| [15] | 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展[J]. 中国农业科技导报, 2024, 26(8): 9-19. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||