








中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (1): 83-91.DOI: 10.13304/j.nykjdb.2021.0941
收稿日期:2021-11-04
接受日期:2022-01-18
出版日期:2023-01-15
发布日期:2023-04-17
通讯作者:
马淏
作者简介:赵文昊 E-mail: zwh163wangyi@163.com;
基金资助:
Wenhao ZHAO(
), Jiangtao JI, Hao MA(
), Xin JIN, Xue LI, Haigang MA
Received:2021-11-04
Accepted:2022-01-18
Online:2023-01-15
Published:2023-04-17
Contact:
Hao MA
摘要:
为快速、精准地提取冬前分蘖期冬小麦覆盖度,提出了一种基于改进K-means算法的冬小麦覆盖度提取方法。首先将冬小麦图像转换到Lab色彩空间,其次利用蜉蝣算法(Mayfly Algorithm, MA)获取K-means最优初始聚类中心,并用马氏距离代替欧氏距离进行算法改进,最后利用分割得到的二值图像计算冬小麦覆盖度。结果显示,该方法的平均分割精度和平均处理时间分别为94.66%和2.03 s,与过绿指数(excess green,EXG)自适应阈值分割和基于粒子群优化算法(particle swarm optimization,PSO)的K-means(PSO-K-means)分割相比,分割精度分别提高了12.04%和4.18%,处理时间分别减少了2.26和2.94 s。该方法分割效果优于EXG和PSO-K-means分割方法,可用于提取冬小麦覆盖度。
中图分类号:
赵文昊, 姬江涛, 马淏, 金鑫, 李雪, 马海港. 基于改进K-means算法的冬小麦覆盖度提取研究[J]. 中国农业科技导报, 2023, 25(1): 83-91.
Wenhao ZHAO, Jiangtao JI, Hao MA, Xin JIN, Xue LI, Haigang MA. Extraction of Winter Wheat Coverage Based on Improved K-means Algorithm[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 83-91.
| 方法 Method | 准确率 Accuracy/% | 平均处理时间 Average processing time/s |
|---|---|---|
| PSO-K-means分割 PSO-K-means segmentation | 89.85 | 4.97 |
| EXG自适应阈值分割 EXG adaptive threshold segmentation | 82.62 | 4.29 |
| 本文方法 Method of this paper | 94.66 | 2.03 |
表1 不同方法下冬小麦分割性能
Table 1 Segmentation performance of winter wheat under different methods
| 方法 Method | 准确率 Accuracy/% | 平均处理时间 Average processing time/s |
|---|---|---|
| PSO-K-means分割 PSO-K-means segmentation | 89.85 | 4.97 |
| EXG自适应阈值分割 EXG adaptive threshold segmentation | 82.62 | 4.29 |
| 本文方法 Method of this paper | 94.66 | 2.03 |
| 1 | 何中虎,庄巧生,程顺和,等.中国小麦产业发展与科技进步[J].农学学报, 2018, 8(1):99-106. |
| HE Z H, ZHUANG Q S, CHENG S H, et al.. Wheat production and technology improvement in China [J]. J. Agric., 2018, 8(1):99-106. | |
| 2 | 张建朝,赵杨,牛娜,等.新型化学杀雄剂与表面活化剂组合筛选及其诱导小麦雄性不育的效果[J].南方农业学报, 2020, 51(3):531-536. |
| ZHANG J C, ZHAO Y, NIU N, et al.. Screening of new chemical hybriding agents with surfactants and the effects on male sterility induction in wheat [J]. J. Southern Agric., 2020, 51(3):531-536. | |
| 3 | 秦伟,朱清科,张学霞,等.植被覆盖度及其测算方法研究进展[J].西北农林科技大学学报(自然科学版), 2006, 34(9):163-170. |
| QIN W, ZHU Q K, ZHANG X X, et al.. Review of vegetation covering and its measuring and calculating method [J]. J. Northwest A&F Univ. (Nat. Sci.), 2006, 34(9):163-170. | |
| 4 | CAI T, MENG X P, LIU T N, et al.. Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones [J/OL]. Front. Plant Sci., 2018, 9(21):1886 [2022-11-25]. . |
| 5 | ADAMS J E, ARKIN G F. A light interception method for measuring row crop ground cover1 [J]. Soil. Sci. Soc. Am. J., 1977, 41(4): 789-792. |
| 6 | 卢艳丽,胡昊,白由路,等.植被覆盖度对冬小麦冠层光谱的影响及定量化估产研究[J].麦类作物学报, 2010, 30(1):96-100. |
| LU Y L, HU H, BAI Y L, et al.. Effects of vegetation coverage on the canopy spectral and yield quantitative estimation in wheat [J]. J. Triticeae Crops, 2010, 30(1):96-100. | |
| 7 | SONG W J, MU X H, RUAN G Y, et al.. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method [J]. Int. J. Appl. Earth Obs., 2017, 58:168-176. |
| 8 | 皮新,曾永,贺城.融合多源遥感数据的高分辨率城市植被覆盖度估算[J].遥感学报, 2021, 25(6):1216-1226. |
| PI X, ZENG Y, HE C. High-resolution urban vegetation coverage estimation based on multi-source remote sensing data fusion [J]. J. Remote Sens., 2021, 25(6):1216-1226. | |
| 9 | 随金明,宋乃平,薛毅,等.基于照相法的荒漠草原植被覆盖度测定方法[J].中国草地学报, 2019, 41(2):58-64. |
| SUI J M, SONG N P, XUE Y, et al.. The method of extracting vegetation coverage in the desert steppe based on photographic [J]. Chin. J. Grassland., 2019, 41(2):58-64. | |
| 10 | 刘哲,乌伟,张善文,等.基于多元岭回归估计小麦种植密度[J].中国农业科技导报, 2020, 22(6):72-80. |
| LIU Z, WU W, ZHANG S W, et al.. Estimating wheat planting density based on multiple ridge regression [J]. J. Agric. Sci. Technol., 2020, 22(6):72-80. | |
| 11 | 黄巧义,张木,李苹,等.支持向量机和最大类间方差法结合的水稻冠层图像分割方法[J].中国农业科技导报, 2019, 21(4):52-60. |
| HUANG Q Y, ZHANG M, LI P, et al.. Rice canopy image segmentation using support vector machine and otsu’s method [J]. J. Agric. Sci. Technol., 2019, 21(4):52-60. | |
| 12 | 牛亚晓,张立元,韩文霆.基于Lab颜色空间的棉花覆盖度提取方法研究[J].农业机械学报, 2018, 49(10):240-249. |
| NIU Y X, ZHANG L Y, HAN W T. Extraction methods of cotton coverage based on lab color space [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(10):240-249. | |
| 13 | 梁丽秀,叶军立,吴丹,等.水稻表层根系图像分割算法研究[J].中国农业科技导报, 2019, 21(1):70-79. |
| LIANG L X, YE J L, WU D, et al.. Study on image segmentation algorithm of rice surface root [J]. J. Agric. Sci. Technol., 2019, 21(1):70-79. | |
| 14 | 吴焕丽,崔可旺,张馨,等.基于改进K-means图像分割算法的细叶作物覆盖度提取[J].农业机械学报, 2019, 50(1):42-50. |
| WU H L, CUI K W, ZHANG X, et al.. Improving accuracy of fine leaf crop coverage by improved K-means algorithm [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(1):42-50 | |
| 15 | ZHENG L, ZHANG J, WANG Q. Mean-shif-based color segmentation of images containing green vegetation [J]. Comput. Electron. Agric., 2009, 65(1): 93-98. |
| 16 | 孙金英,黄云,曹宏鑫,等.油菜地上生物量与冠层光谱植被指数之间的相关分析[J].南方农业学报, 2009, 40(6):716-723. |
| SUN J Y, HUANG Y, CAO H X, et al.. Correlation analysis between aboveground biomass of rape and canopy spectral vegetation index [J]. J. Southern Agric., 2009, 40(6):716-723. | |
| 17 | 陈刘凤,林开平,胡宝清,等.基于Landsat8_OLI数据的甘蔗种植面积监测[J].南方农业学报, 2015, 46(11):2068-2072. |
| CHEN L F, LIN K P, HU B Q, et al.. Monitoring of sugarcane planting area based on Landsat8 OLI data [J]. J. Southern Agric., 2015, 46(11):2068-2072. | |
| 18 | LAURENT K, PIERRE H, CECILE D, et al.. Dry-season vegetation mass and cover fraction from SWIR1.6 and SWIR2.1 band ratio: ground-radiometer and MODIS data in the sahel [J]. Int. J. Appl. Earth. Obs., 2015, 39:56-64. |
| 19 | 刘昕,杨光,林群,等.基于连续小波变换的蒺藜植被覆盖度预测[J].中国农业科技导报,2021,23(10):107-116. |
| LIU X, YANG G, LIN Q, et al.. Prediction on the vegetation coverage of tribulus terrestris l. based on the continuous wavelet transform [J]. J. Agric. Sci. Technol., 2021,23(10):107-116. | |
| 20 | 冯海英,冯仲科,冯海霞.一种基于无人机高光谱数据的植被盖度估算新方法[J].光谱学与光谱分析, 2017, 37(11):3573-3578. |
| FENG H Y, FENG Z K, FENG H X. A new method for estimating the fractional vegetation cover based on UVA hyperspectrum [J]. Spectrosc. Spect. Anal., 2017, 37(11):3573-3578. | |
| 21 | 李冰,刘镕源,刘素红,等.基于低空无人机遥感的冬小麦覆盖度变化监测[J].农业工程学报, 2012, 28(13):160-165. |
| LI B, LIU R Y, LIU S H, et al..Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(13):160-165. | |
| 22 | BAI X D, CAO Z G, WANG Y, et al.. Crop segmentation from images by morphology modeling in the CIE L*a*b* color space[J]. Comput. Electron. Agric., 2013, 99:21-34. |
| 23 | 刘哲,黄文准,王利平.基于改进K-means聚类算法的大田麦穗自动计数[J].农业工程学报, 2019, 35(3):174-181. |
| LIU Z, HUANG W Z, WANG L P. Field wheat ear counting automatically based on improved K-means clustering algorithm [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(3):174-181. | |
| 24 | ZERVOUDAKIS K, TSAFARAKIS S. A mayfly optimization algorithm [J/OL]. Com. Ind. Eng., 2020, 145:106559 [2021-11-26]. . |
| 25 | 李华,王菊香,邢志娜,等.改进的K/S算法对近红外光谱模型传递影响的研究[J].光谱学与光谱分析, 2011, 31(2):362-365. |
| LI H, WANG J X, XING Z N, et al.. Influence of improved kennard/stone algorithm on the calibration transfer in near-infrared spectroscopy [J]. Spectrosc. Spect. Anal., 2011, 31(2):362-365. | |
| 26 | 祁力钧,程一帆,程浈浈,等.基于M-K聚类法的果树上下冠层体积比测算[J].农业机械学报, 2018, 49(5):57-64. |
| QI L J, CHENG Y F, CHENG Z Z, et al.. Estimation of upper and lower canopy volume ratio of fruit trees based on M-K clustering [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(5):57-64. | |
| 27 | 陈梦涛,余粟.基于Lab颜色空间的自适应K均值彩色图像分割方法[J].软件导刊, 2021, 20(6):230-234. |
| CHEN M T, YU S. Adaptive K-means color image seqmentation method based on Lab color space [J] Software Guide, 2021, 20(6):230-234. |
| [1] | 王彦芳, 赵瑞雪. “数据 + AI”双向赋能机制与农业领域实践[J]. 中国农业科技导报, 2025, 27(9): 11-20. |
| [2] | 张振飞, 颜安, 郭靖, 赵宇航, 袁以琳, 刘鹏, 曲佐昊, 袁川. 基于无人机遥感的苹果产量估测模型研究[J]. 中国农业科技导报, 2025, 27(9): 110-119. |
| [3] | 吴正, 杨红云, 孙爱珍, 孔杰, 黄淑梅. 基于CA_MobileViT模型的水稻钾素营养诊断研究[J]. 中国农业科技导报, 2025, 27(8): 80-88. |
| [4] | 王亚鑫, 吕洋成, 王文琦, 刘琦, 杨杰, 任桂鸿, 张吴平, 李富忠. 番茄植株生长过程中茎叶表型的无损分割与提取[J]. 中国农业科技导报, 2025, 27(7): 90-100. |
| [5] | 汤敏睿, 何亮, 顾生浩, 杨婉霞, 岳瑞君, 谭艺, 王磊, 冯腾飞. 联邦学习在智慧农业系统中的应用研究综述[J]. 中国农业科技导报, 2025, 27(6): 1-15. |
| [6] | 袁嘉良, 连润楠, 张吴平. 黄花菜花蕾的精准识别与分级方法[J]. 中国农业科技导报, 2025, 27(5): 103-112. |
| [7] | 陈自立, 林卫, 贺佳, 王来刚, 郑国清, 彭一龙, 焦家东, 郭燕. 基于卷积神经网络的农作物病害识别研究[J]. 中国农业科技导报, 2025, 27(4): 99-109. |
| [8] | 陈林涛, 刘兆祥, 蓝莹, 牟向伟, 马旭, 王日俊. 基于高光谱技术与主成分分析的稻种品种识别研究[J]. 中国农业科技导报, 2025, 27(3): 104-111. |
| [9] | 吴建伟, 张琳, 郑文刚, 秦向阳, 吴忠高, 方锡红, 王永泉, 芦天罡, 王健, 朴香淑, 王芳, 岳巧云, 张海合, 季婧, 丛小蔓, 李奇峰. 智慧果园关键应用场景研究进展[J]. 中国农业科技导报, 2025, 27(3): 12-23. |
| [10] | 郑舒元, 刀剑, 张学林, 刘珊珊, 王建雄. 基于可见光波段的绿色植被提取方法研究[J]. 中国农业科技导报, 2025, 27(1): 107-117. |
| [11] | 田祥州, 贺福强, 陈发江, 詹璐歆. 基于休止角标定不同含水率木粉离散元参数[J]. 中国农业科技导报, 2025, 27(1): 118-128. |
| [12] | 张彦, 王来刚, 贺佳, 郭燕, 杨秀忠, 张红利, 刘婷. 基于多源遥感数据的茶叶种植面积时空变化研究[J]. 中国农业科技导报, 2024, 26(12): 107-114. |
| [13] | 黄诗锐, 王天一, 文韬, 周江龙. 基于改进YOLOv7的农作物虫害识别[J]. 中国农业科技导报, 2024, 26(11): 107-116. |
| [14] | 唐天君, 陈洋, 胡军, 江浩田. 基于无人机影像数据的烟草精准识别方法研究[J]. 中国农业科技导报, 2024, 26(10): 145-157. |
| [15] | 彭明康, 崔钰, 薛淇元, 殷允振, 尹哲, 张吴平, 李富忠. 基于天气数据增强和微调的苗期作物杂草识别定位模型[J]. 中国农业科技导报, 2024, 26(10): 125-134. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||