| [1] |
KHAN M, SETO D, SUBRAMANIAM R, et al.. Oh, the places they’ll go! a survey of phytopathogen effectors and their host targets [J]. Plant J., 2018, 93(4): 651-663.
|
| [2] |
C-NMEISRIMLER, ALLAN C, ECCERSALL S, et al.. Interior design: how plant pathogens optimize their living conditions [J]. New Phytol., 2021, 229(5): 2514-2524.
|
| [3] |
陈玉鑫, 张钰析, 刘锦春, 等. 枣疯病研究进展[J]. 延安大学学报(自然科学版), 2023, 42(1): 90-95.
|
|
CHEN Y, ZHANG Y, LIU J, et al.. Research progress on jujube witches' broom [J]. J. Yan’an Univ.(Nat. Sci.), 2023, 42(1): 90-95.
|
| [4] |
杨帆, 虞国跃, 李姝, 等. 枣疯病媒介昆虫研究进展[J]. 落叶果树, 2024, 56(6): 47-52.
|
| [5] |
JUNG H Y, SAWAYANAGI T, KAKIZAWA S, et al.. ‘Candidatus phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches’-broom disease [J]. Int. J. Syst. Evol. Microbiol., 2003, 53(Pt 4): 1037-1041.
|
| [6] |
WANG J, SONG L, JIAO Q, et al.. Comparative genome analysis of jujube witches’-broom phytoplasma, an obligate pathogen that causes jujube witches’-broom disease [J/OL]. BMC Genom., 2018, 19(1): 689 [2025-06-20]. .
|
| [7] |
XUE C, ZHANG Y, LI H, et al.. The genome of Candidatus phytoplasma ziziphi provides insights into their biological characteristics [J/OL]. BMC Plant Biol., 2023, 23(1): 251 [2025-06-20]. .
|
| [8] |
ZHOU J, MA F, YAO Y, et al.. Jujube witches’ broom phytoplasma effectors SJP1 and SJP2 induce lateral bud outgrowth by repressing the ZjBRC1-controlled auxin efflux channel [J]. Plant Cell Environ., 2021, 44(10): 3257-3272.
|
| [9] |
MA F, ZHENG Y, ZHANG N, et al.. The ‘Candidatus phytoplasma ziziphi’ effectors SJP1/2 negatively control leaf size by stabilizing the transcription factor ZjTCP2 in jujube [J]. J. Exp. Bot., 2024, 75(10): 3054-3069.
|
| [10] |
CHEN P, CHEN L, YE X, et al.. Phytoplasma effector Zaofeng6 induces shoot proliferation by decreasing the expression of ZjTCP7 in Ziziphus jujuba [J/OL]. Hortic. Res., 2022, 9: uhab032 [2025-06-20]. .
|
| [11] |
CHEN P, ZHANG Y, LI Y, et al.. Jujube witches’ broom phytoplasma effector Zaofeng3, a homologous effector of SAP54, induces abnormal floral organ development and shoot proliferation [J]. Phytopathology, 2024, 114(1): 200-210.
|
| [12] |
BENDTSEN J D, KIEMER L, FAUSBØLL A, et al.. Non-classical protein secretion in bacteria [J/OL]. BMC Microbiol., 2005, 5: 58 [2025-06-20]. .
|
| [13] |
WANG G, XIA Y, SONG X, et al.. Common non-classically secreted bacterial proteins with experimental evidence [J]. Curr. Microbiol., 2016, 72(1): 102-111.
|
| [14] |
GAO X, REN Z, ZHAO W, et al.. Candidatus phytoplasma ziziphi encodes non-classically secreted proteins that suppress hypersensitive cell death response in Nicotiana benthamiana [J/OL]. Phytopathol. Res., 2023, 5(1): 11 [2025-06-20]. .
|
| [15] |
LIU X, FAN Y, ZHANG C, et al.. Nuclear import of a secreted “Candidatus Liberibacter asiaticus” protein is temperature dependent and contributes to pathogenicity in Nicotiana benthamiana [J/OL]. Front. Microbiol., 2019, 10: 1684 [2025-06-20]. .
|
| [16] |
JONES L, HAMILTON A J, VOINNET O, et al.. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing [J]. Plant Cell, 1999, 11(12): 2291-2301.
|
| [17] |
LIN J S, LAI E M. Protein-protein interactions: co-immunoprecipitation [J]. Methods Mol. Biol., 2017, 1615: 211-219.
|
| [18] |
CHEN H, ZOU Y, SHANG Y, et al.. Firefly luciferase complementation imaging assay for protein-protein interactions in plants [J]. Plant Physiol., 2008, 146(2): 368-376.
|
| [19] |
RAPISARDA C, FRONZES R. Secretion systems used by bacteria to subvert host functions [J]. Curr. Issues Mol. Biol., 2018, 25: 1-42.
|
| [20] |
KAKIZAWA S, OSHIMA K, NISHIGAWA H, et al.. Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli [J]. Microbiology, 2004, 150(Pt 1): 135-142.
|
| [21] |
牟海青, 朱水芳, 徐霞, 等. 植原体病害研究概况[J]. 植物保护, 2011, 37(3): 17-22.
|
|
MOU H Q, ZHU S F, XU X, et al.. An overview of research on phytoplasma-induced diseases [J]. Plant Protect., 2011, 37(3): 17-22.
|
| [22] |
DU P, ZHANG C, ZOU X, et al.. “Candidatus Liberibacter asiaticus” secretes nonclassically secreted proteins that suppress host hypersensitive cell death and induce expression of plant pathogenesis-related proteins [J/OL]. Appl. Environ. Microbiol., 2021, 87(8): e00019- 21 [2025-06-20]. .
|
| [23] |
HARTH G, HORWITZ M A. Expression and efficient export of enzymatically active Mycobacterium tuberculosis glutamine synthetase in Mycobacterium smegmatis and evidence that the information for export is contained within the protein [J]. J. Biol. Chem., 1997, 272(36): 22728-22735.
|
| [24] |
LIN Y H, XU M Y, HSU C C, et al.. Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities [J/OL]. Nat. Commun., 2023, 14(1): 5755 [2025-06-20]. .
|
| [25] |
SHEN Y, WEI W, ZHOU D X. Histone acetylation enzymes coordinate metabolism and gene expression [J]. Trends Plant Sci., 2015, 20(10): 614-621.
|
| [26] |
KUMAR V, THAKUR J K, PRASAD M. Histone acetylation dynamics regulating plant development and stress responses [J]. Cell. Mol. Life Sci., 2021, 78(10): 4467-4486.
|
| [27] |
C-HPARK, CHEN S, SHIRSEKAR G, et al.. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice [J]. Plant Cell, 2012, 24(11): 4748-4762.
|
| [28] |
CHEN X, DUAN Y, QIAO F, et al.. A secreted fungal effector suppresses rice immunity through host histone hypoacetylation [J]. New Phytol., 2022, 235(5): 1977-1994.
|
| [29] |
SUAREZ-FERNANDEZ M, ÁLVAREZ-ARAGÓN R, PASTOR-MEDIAVILLA A, et al.. Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen [J/OL]. mBio, 2023, 14(5): e0138623 [2025-06-20]. .
|
| [30] |
VIJAYAPALANI P, HEWEZI T, PONTVIANNE F, et al.. An effector from the cyst nematode Heterodera schachtii derepresses host rRNA genes by altering histone acetylation [J]. Plant Cell, 2018, 30(11): 2795-2812.
|
| [31] |
WANG L, CHEN H, LI J, et al.. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen [J]. Nucl. Acids Res., 2020, 48(4): 1790-1799.
|