中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (9): 21-34.DOI: 10.13304/j.nykjdb.2024.0158
姚佳琦(), 杨春彦, 杨云凤, 白皓, 江勇, 常国斌, 陈国宏, 王志秀(
)
收稿日期:
2024-03-04
接受日期:
2024-09-18
出版日期:
2025-09-15
发布日期:
2025-09-24
通讯作者:
王志秀
作者简介:
姚佳琦 E-mail: kaltist123@163.com;
基金资助:
Jiaqi YAO(), Chunyan YANG, Yunfeng YANG, Hao BAI, Yong JIANG, Guobin CHANG, Guohong CHEN, Zhixiu WANG(
)
Received:
2024-03-04
Accepted:
2024-09-18
Online:
2025-09-15
Published:
2025-09-24
Contact:
Zhixiu WANG
摘要:
肌肉和脂肪组织是畜禽机体的重要组成部分,二者都能作为内分泌器官分泌细胞因子、外泌体等物质,并通过自分泌和旁分泌方式调节肌内脂肪沉积。不同的品种、品系甚至同一品系不同个体间肌内脂肪的沉积均有差异。肌内脂肪与肉品质及风味密切相关,其沉积受遗传、环境和营养水平因素的影响,同时又与肌肉组织之间相互联系,如肌纤维发育和类型以及肌源性细胞的数量也会影响肌内脂肪沉积。因此,主要从细胞因子、外泌体、代谢产物和细胞器功能等方面综述肌肉与肌内脂肪互作的最新研究进展,为肌内脂肪和肉品质及风味的遗传改良奠定基础。
中图分类号:
姚佳琦, 杨春彦, 杨云凤, 白皓, 江勇, 常国斌, 陈国宏, 王志秀. 肌肉与脂肪组织互作调节肌内脂肪沉积的研究进展[J]. 中国农业科技导报, 2025, 27(9): 21-34.
Jiaqi YAO, Chunyan YANG, Yunfeng YANG, Hao BAI, Yong JIANG, Guobin CHANG, Guohong CHEN, Zhixiu WANG. Advances in Mechanism of Skeletal Muscle-adipose Crosstalk in Regulating Intramuscular Fat Depostion[J]. Journal of Agricultural Science and Technology, 2025, 27(9): 21-34.
细胞因子 Cytokine | 分类 Classification | 作用 Effect |
---|---|---|
瘦素 | 脂肪因子 | |
Leptin | Increase fatty acid oxidation and glucose uptake[ | |
脂联素 Adiponectin | 脂肪因子 | 增加脂质氧化、游离脂肪酸、炎症因子合成[ Increase lipid oxidation,promotes synthesis of free fatty acids and inflammatory factors[ |
白细胞介素-6 IL-6 | 肌脂因子 | 刺激脂肪细胞的脂肪分解[ Stimulate fat breakdown in adipocytes[ |
使白色脂肪转化成棕色脂肪[ Induce WAT(white adipose tissues) conversion into beige BAT(brown adipose tissues)[ | ||
肿瘤坏死因子-α TNF-α | 脂肪因子 | 与胰岛素抵抗有关[ |
降脂素 Adipsin | 脂肪因子 | 促进脂质积累和脂肪细胞标志物的表达[ Promote accumulation of lipid and expression of adipocyte markers[ |
鸢尾素 Irisin | 肌脂因子 | 诱导白色脂肪组织褐变[ Promote WAT browning[ |
白细胞介素-15 IL-15 | 肌因子 | 促进FAPs的增殖,防止脂肪生成[ Promote proliferation of FAPs and prevents adipogenesis[ |
肌联素 Myonectin | 肌因子 | 抑制脂肪沉积[ Inhibit lipid deposition[ |
肌肉生长抑制素 Myostatin | 肌因子 | 抑制肌肉生长发育[ Inhibit muscle growth[ |
表 1 参与肌肉-脂肪互作的细胞因子
Table 1 Cytokines involved in muscle-fat interactions
细胞因子 Cytokine | 分类 Classification | 作用 Effect |
---|---|---|
瘦素 | 脂肪因子 | |
Leptin | Increase fatty acid oxidation and glucose uptake[ | |
脂联素 Adiponectin | 脂肪因子 | 增加脂质氧化、游离脂肪酸、炎症因子合成[ Increase lipid oxidation,promotes synthesis of free fatty acids and inflammatory factors[ |
白细胞介素-6 IL-6 | 肌脂因子 | 刺激脂肪细胞的脂肪分解[ Stimulate fat breakdown in adipocytes[ |
使白色脂肪转化成棕色脂肪[ Induce WAT(white adipose tissues) conversion into beige BAT(brown adipose tissues)[ | ||
肿瘤坏死因子-α TNF-α | 脂肪因子 | 与胰岛素抵抗有关[ |
降脂素 Adipsin | 脂肪因子 | 促进脂质积累和脂肪细胞标志物的表达[ Promote accumulation of lipid and expression of adipocyte markers[ |
鸢尾素 Irisin | 肌脂因子 | 诱导白色脂肪组织褐变[ Promote WAT browning[ |
白细胞介素-15 IL-15 | 肌因子 | 促进FAPs的增殖,防止脂肪生成[ Promote proliferation of FAPs and prevents adipogenesis[ |
肌联素 Myonectin | 肌因子 | 抑制脂肪沉积[ Inhibit lipid deposition[ |
肌肉生长抑制素 Myostatin | 肌因子 | 抑制肌肉生长发育[ Inhibit muscle growth[ |
[1] | WOLFE R R. The underappreciated role of muscle in health and disease [J]. Am. J. Clin. Nutr., 2006, 84(3):475-482. |
[2] | XIONG L, PEI J, BAO P J, et al.. The effect of the feeding system on fat deposition in yak subcutaneous fat [J/OL]. Int. J. Mol. Sci., 2023,24(8):7381 [2024-01-03].. |
[3] | YOUNG H E, DUPLAA C, YOUNG T M, et al.. Clonogenic analysis reveals reserve stem cells in postnatal mammals:I.pluripotent mesenchymal stem cells [J]. Anat. Rec., 2001,263(4):350-360. |
[4] | ASAKURA A, SEALE P, GIRGIS-GABARDO A, et al.. Myogenic specification of side population cells in skeletal muscle [J]. J. Cell Biol., 2002, 159(1):123-134. |
[5] | CUI J X, CHEN W, LIU J, et al.. Study on quantitative expression of PPARγ and ADRP in muscle and its association with intramuscular fat deposition of pig [J/OL]. Springerplus,2016, 5(1):1501 [2024-01-03]. . |
[6] | WANG Z L, LI Y L, WU L L, et al.. Rosiglitazone-induced PPARγ activation promotes intramuscular adipocyte adipogenesis of pig [J]. Anim. Biotechnol., 2023, 34(8):3708-3717. |
[7] | 付玲娟,史金平,张全伟,等. PPARA基因对绵羊肌内脂肪沉积的影响及其多态性[J].华北农学报,2024,39(2):209-218. |
FU L J, SHI J P, ZHANG Q W, et al.. The effect of PPARA gene on intramuscular fat deposition in sheep and its polymorphism [J]. Acta Agric. Boreali-Sin., 2024, 39(2):209-218. | |
[8] | CHEN Q M, WANG H, ZENG Y Q, et al.. Developmental changes and effect on intramuscular fat content of H-FABP and A-FABP mRNA expression in pigs [J]. J. Appl. Genet., 2013, 54(1):119-123. |
[9] | CHEN L. Effect of fatty acid-binding proteins (FABPs) gene polymorphism on animal products quality [J]. Anim. Husb. Feed Sci., 2013, 34(10):82-84. |
[10] | LANG X, WANG C, WU P J, et al.. Developmental changes in fatty acid-binding protein (H-FABP) mRNA expression and intramuscular fat (IMF) content in Oula sheep [J]. Transl. Anim. Sci., 2017, 1(2):146-153. |
[11] | LIM K S, LEE K T, PARK J E, et al.. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing [J]. Anim. Genet., 2017, 48(2):166-174. |
[12] | AN Y T, WANG G, DIAO Y R, et al.. A molecular switch regulating cell fate choice between muscle progenitor cells and brown adipocytes [J]. Dev. Cell, 2017, 41(4):382-391. |
[13] | QI R L, QIU X Y, ZHANG Y, et al.. Comparison of LncRNA expression profiles during myogenic differentiation and adipogenic transdifferentiation of myoblasts [J/OL]. Int. J. Mol. Sci., 2019,20(15):3725 [2024-01-03].. |
[14] | LI Q, WANG O, JI B P, et al.. Alcohol,white adipose tissue,and brown adipose tissue:mechanistic links to lipogenesis and lipolysis [J/OL]. Nutrients, 2023,15(13):2953 [2024-01-03].. |
[15] | GUO L, QUAN M, PANG W J, et al.. Cytokines and exosomal miRNAs in skeletal muscle-adipose crosstalk [J]. Trends Endocrinol. Metab., 2023, 34(10):666-681. |
[16] | LI S F, LI X. Leptin in normal physiology and leptin resistance [J]. Sci. Bull., 2016, 61(19):1480-1488. |
[17] | PERAKAKIS N, FARR O M, MANTZOROS C S.Leptin in leanness and obesity:JACC state-of-the-art review [J]. J. Am.Coll. Cardiol., 2021, 77(6):745-760. |
[18] | KARMAZYN M, GAN X T. Molecular and cellular mechanisms underlying the cardiac hypertrophic and pro-remodelling effects of leptin [J/OL]. Int. J. Mol. Sci., 2024, 25(2):1137 [2024-01-03].. |
[19] | MINOKOSHI Y, KIM Y B, PERONI O D, et al.. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nature, 2002, 415(6869):339-343. |
[20] | HARA K, HORIKOSHI M, YAMAUCHI T, et al.. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome [J]. Diabetes Care, 2006, 29(6):1357-1362. |
[21] | LUO Z G, LI X, LI M Z, et al.. Expression changes of adiponection (AdipoQ) and its receptor genes (AdipoR1 and AdipoR2) in porcine Longissimus dorsi and Psoas major muscles [J]. J. Agric. Biotechnol., 2011, 19(3):507-512. |
[22] | WADA T, YAMAMOTO Y, TAKASUGI Y, et al.. Adiponectin regulates the circadian rhythm of glucose and lipid metabolism [J]. J. Endocrinol., 2022, 254(2):121-133. |
[23] | LOPEZ-YUS M, LOPEZ-PEREZ R, GARCIA-SOBREVIELA M P, et al.. Adiponectin overexpression in C2C12 myocytes increases lipid oxidation and myofiber transition [J]. J. Physiol. Biochem., 2022, 78(2):517-525. |
[24] | FEUERMANN Y, MABJEESH S J, NIV-SPECTOR L, et al.. Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad [J]. J. Endocrinol., 2006, 191(2):407-413. |
[25] | MATSUBARA M, MARUOKA S, KATAYOSE S.Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women [J]. Eur. J. Endocrinol., 2002, 147(2):173-180. |
[26] | HUNTER C A, JONES S A. IL-6 as a keystone cytokine in health and disease [J]. Nat. Immunol., 2015, 16(5):448-457. |
[27] | FARHADI S, SHODJA GHIAS J, HASANPUR K, et al.. Molecular mechanisms of fat deposition:IL-6 is a hub gene in fat lipolysis, comparing thin-tailed with fat-tailed sheep breeds [J]. Arch. Anim. Breed., 2021, 64(1):53-68. |
[28] | XUAN M F, LUO Z B, HAN S Z, et al.. Skeletal muscle-secreted myokine interleukin-6 induces white adipose tissue conversion into beige adipose tissue in myostatin gene knockout pigs [J/OL].Domest. Anim. Endocrinol., 2022,78:106679 [2024-01-03]. . |
[29] | YANG Y Q, YANG G S. Effect of interleukin-6 on lipolysis in porcine adipocytes [J]. Chin. J. Anim. Vet. Sci., 2009, 40(8):1131-1138. |
[30] | LI J, ZHAO W H, HU J. Effects of fenofibrate on the serum levels of adiponectin and tumor necrosis factor α in rats with insulin resistance [J]. China Med. Her., 2009, 6(18):24-25. |
[31] | XING H, NORTHROP J P, GROVE J R, et al.. TNF alpha-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARgamma without effects on Pref-1 expression [J]. Endocrinology, 1997,138(7):2776-2783. |
[32] | RYU K Y, JEON E J, LEEM J, et al.. Regulation of adipsin expression by endoplasmic reticulum stress in adipocytes [J/OL].Biomolecules, 2020,10(2):314 [2024-01-03].. |
[33] | LO J C, LJUBICIC S, LEIBIGER B, et al.. Adipsin is an adipokine that improves β cell function in diabetes [J]. Cell, 2014, 158(1):41-53. |
[34] | SONG N J, KIM S, JANG B H, et al.. Small molecule-induced complement factor D (adipsin) promotes lipid accumulation and adipocyte differentiation [J/OL].PLoS One, 2016,11(9):e0162228 [2024-01-03]. . |
[35] | PEDERSEN B K, FEBBRAIO M A. Muscles,exercise and obesity:skeletal muscle as a secretory organ [J]. Nat. Rev. Endocrinol., 2012, 8(8):457-465. |
[36] | ROCA-RIVADA A, CASTELAO C, SENIN L L, et al.. FNDC5/irisin is not only a myokine but also an adipokine [J/OL]. PLoS One, 2013,8(4):e60563 [2024-01-03].. |
[37] | GAO S S, LI F M, LI H M, et al.. Effects and molecular mechanism of GST-irisin on lipolysis and autocrine function in 3T3-L1 adipocytes [J/OL]. PLoS One, 2016,11(1):e0147480 [2024-01-03]. . |
[38] | BOSTRÖM P, WU J, JEDRYCHOWSKI M P, et al.. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis [J]. Nature, 2012,481(7382):463-468. |
[39] | LUO Y Y, QIAO X Y, MA Y X, et al.. Disordered metabolism in mice lacking irisin [J/OL]. Sci. Rep., 2020,10(1):17368 [2024-01-03]. . |
[40] | CARBÓ N, LÓPEZ-SORIANO J, COSTELLI P, et al.. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass:a potential role in body weight control [J]. Biochim. Biophys. Acta, 2001, 1526(1):17-24. |
[41] | KANG X, YANG M Y, SHI Y X, et al.. Interleukin-15 facilitates muscle regeneration through modulation of fibro/adipogenic progenitors [J/OL]. Cell Commun. Signal., 2018,16(1):42 [2024-01-03]. . |
[42] | LYU S J, SU L, LI H, et al.. Polymorphisms of the interleukin-15 gene and their associations with fatness and muscle fiber traits in chickens [J]. J. Appl. Genet., 2012, 53(4):443-448. |
[43] | SUN Z W, LIU Z Q, XI J N, et al.. Effects of myonectin on porcine intramuscular adipocyte differentiation and exogenous free fatty acid utilization [J]. Anim. Biotechnol., 2023,34(8):3757-3764. |
[44] | LITTLE H C, RODRIGUEZ S, LEI X, et al.. Myonectin deletion promotes adipose fat storage and reduces liver steatosis [J]. FASEB J., 2019, 33(7):8666-8687. |
[45] | LEE S J. Myostatin:a skeletal muscle chalone [J]. Annu. Rev. Physiol., 2023, 85:269-291. |
[46] | BHATTACHARYA T K, SHUKLA R, CHATTERJEE R N, et al.. Knock down of the myostatin gene by RNA interference increased body weight in chicken [J]. J. Biotechnol., 2017, 241:61-68. |
[47] | ZHAO R, ZHAO T T, HE Z Z, et al.. Composition,isolation,identification and function of adipose tissue-derived exosomes [J]. Adipocyte, 2021, 10(1):587-604. |
[48] | DU Y, WANG Y, XU Q, et al.. TMT-based quantitative proteomics analysis reveals the key proteins related with the differentiation process of goat intramuscular adipocytes [J/OL].BMC Genomics, 2021,22(1):417 [2024-01-03].. |
[49] | HAN S S, CUI C, WANG Y, et al.. Knockdown of CSRP3 inhibits differentiation of chicken satellite cells by promoting TGF-β/Smad3 signaling [J]. Gene, 2019, 707:36-43. |
[50] | LI D F, PAN Z X, ZHANG K, et al.. Identification of the differentially expressed genes of muscle growth and intramuscular fat metabolism in the development stage of yellow broilers [J/OL]. Genes, 2020,11(3):244 [2024-01-03].. |
[51] | ZHANG X, LUO Y, WANG C Q, et al.. Adipose mTORC1 suppresses prostaglandin signaling and beige adipogenesis via the CRTC2-COX-2 pathway [J]. Cell Rep., 2018, 24(12):3180-3193. |
[52] | MATSUZAKA T, SHIMANO H. Novel role for the CRTC2 in lipid homeostasis [J]. J. Diabetes Investig., 2016,7(5):677-679. |
[53] | LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14 [J]. Cell, 1993, 75(5):843-854. |
[54] | CASTAÑO C, KALKO S, NOVIALS A, et al.. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice [J]. Proc. Natl. Acad. Sci. USA, 2018,115(48):12158-12163. |
[55] | CHEN C, YAN Q X, YAN Y G, et al.. MicroRNA-1 regulates the differentiation of adipose-derived stem cells into cardiomyocyte-like cells [J/OL]. Stem Cells Int., 2018,2018:7494530 [2024-01-03]. . |
[56] | RODRIGUES A C, SPAGNOL A R, DE TOLEDO FRIAS F,et al.. Intramuscular injection of miR-1 reduces insulin resistance in obese mice [J/OL]. Front. Physiol., 2021,12:676265 [2024-01-03].. |
[57] | ZHANG X R, ZUO X X, YANG B, et al.. MicroRNA directly enhances mitochondrial translation during muscle differentiation [J]. Cell, 2014, 158(3):607-619. |
[58] | NAKAJIMA N, TAKAHASHI T, KITAMURA R, et al.. MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation [J].Biochem. Biophys. Res. Commun., 2006, 350(4):1006-1012. |
[59] | TANG R Q, MA F F, LI W, et al.. miR-206-3p Inhibits 3T3-L1 Cell Adipogenesis via the c-Met/PI3K/Akt Pathway [J/OL]. Int.J. Mol. Sci., 2017,18(7):1510 [2024-01-03]. . |
[60] | MARIANI M, MCHUGH M, PETRILLO M, et al.. HGF/c-Met axis drives cancer aggressiveness in the neo-adjuvant setting of ovarian cancer [J]. Oncotarget, 2014, 5(13):4855-4867. |
[61] | ANDERSON C, CATOE H, WERNER R. MIR-206 regulates connexin43 expression during skeletal muscle development [J].Nucleic Acids Res., 2006, 34(20):5863-5871. |
[62] | WANG Z, ZHAO Q S, LI X Q, et al.. MYOD1 inhibits avian adipocyte differentiation via miRNA-206/KLF4 axis [J/OL]. J.Anim. Sci. Biotechnol., 2021,12(1):55 [2024-01-03]. . |
[63] | IQBAL A, JIANG P, ALI S, et al.. Role of microRNAs in myogenesis and their effects on meat quality in pig-a review [J].Asian-Australas J. Anim. Sci., 2020, 33(12):1873-1884. |
[64] | LIU W Y, BI P P, SHAN T Z, et al.. miR-133a regulates adipocyte browning in vivo [J/OL]. PLoS Genet., 2013,9(7):e1003626 [2024-01-03]. . |
[65] | MITCHELSON K R, QIN W Y.Roles of the canonical myomiRs miR-1,-133 and -206 in cell development and disease [J]. World J. Biol. Chem., 2015, 6(3):162-208. |
[66] | SEOK H Y, TATSUGUCHI M, CALLIS T E, et al.. miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation [J]. J. Biol. Chem., 2011, 286(41):35339-35346. |
[67] | XU S F, CHANG Y, WU G X, et al.. Potential role of miR-155-5p in fat deposition and skeletal muscle development of chicken [J/OL]. Biosci. Rep., 2020, 40(6):20193796 [2024-01-03]. . |
[68] | KARKENI E, ASTIER J, TOURNIAIRE F, et al.. Obesity-associated inflammation induces microRNA-155 expression in adipocytes and adipose tissue:outcome on adipocyte function [J]. J. Clin. Endocrinol. Metab., 2016, 101(4):1615-1626. |
[69] | KIM S Y, KIM A Y, LEE H W, et al.. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression [J]. Biochem. Biophys. Res. Commun., 2010, 392(3):323-328. |
[70] | KAJIMOTO K, NARABA H, IWAI N. MicroRNA and 3T3-L1 pre-adipocyte differentiation [J]. RNA, 2006, 12(9):1626-1632. |
[71] | YU Y, DU H W, WEI S N, et al.. Adipocyte-derived exosomal miR-27a induces insulin resistance in skeletal muscle through repression of PPARγ [J]. Theranostics, 2018, 8(8):2171-2188. |
[72] | WANG Y C, LI Y Y, WANG X Y, et al.. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity [J]. Diabetologia, 2013, 56(10):2275-2285. |
[73] | LI Y Y, HE C S, RAN L, et al.. miR-130b duplex (miR-130b-3p/miR-130b-5p) negatively regulates goat intramuscular preadipocyte lipid droplets accumulation by inhibiting Krüppel-like factor 3 expression [J/OL]. J. Anim. Sci., 2023,101:184 [2024-01-03]. . |
[74] | BITTEL D C, JAISWAL J K. Contribution of extracellular vesicles in rebuilding injured muscles [J/OL]. Front. Physiol., 2019,10:828 [2024-01-03]. . |
[75] | NAKAMURA Y, MIYAKI S, ISHITOBI H, et al.. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration [J]. Febs Lett., 2015, 589(11):1257-1265. |
[76] | NIE Y H, SATO Y, GARNER R T, et al.. Skeletal muscle-derived exosomes regulate endothelial cell functions via reactive oxygen species-activated nuclear factor-κB signaling [J]. Exp. Physiol., 2019, 104(8):1262-1273. |
[77] | YU H W, WANG J F, ZHANG K, et al.. Integrated multi-omics analysis reveals variation in intramuscular fat among muscle locations of Qinchuan cattle [J/OL]. BMC Genomics, 2023,24(1):367 [2024-01-03].. |
[78] | LIU J J, LIANG S, LIU X X, et al.. The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid [J]. J. Lipid Res., 2012, 53(6):1071-1079. |
[79] | TAKAHASHI A, DOHI H, EGASHIRA Y, et al.. Erucic acid derived from rosemary regulates differentiation of mesenchymal stem cells into osteoblasts/adipocytes via suppression of peroxisome proliferator-activated receptor γ transcriptional activity [J]. Phytother. Res., 2020, 34(6):1358-1366. |
[80] | ZHUKOV A V, SHUMSKAYA M. Very-long-chain fatty acids (VLCFAs) in plant response to stress [J]. Funct. Plant Biol., 2020, 47(8):695-703. |
[81] | HU C J, JIANG Q Y, ZHANG T, et al.. Dietary supplementation with arginine and glutamic acid modifies growth performance,carcass traits,and meat quality in growing-finishing pigs [J]. J. Anim. Sci., 2017, 95(6):2680-2689. |
[82] | DUAN Y H, ZHENG C B, ZHENG J, et al.. Profiles of muscular amino acids,fatty acids,and metabolites in Shaziling pigs of different ages and relation to meat quality [J]. Sci. China Life Sci., 2023, 66(6):1323-1339. |
[83] | JIANG Y J, SUN S J, CAO W X, et al.. Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids:roles for the AMPK-ULK1 signaling pathway and α7nAChR [J/OL].Biochim. Biophys. Acta Mol. Basis Dis., 2021,1867(1):165980 [2024-01-03]. . |
[84] | YONESHIRO T, WANG Q, TAJIMA K, et al.. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44 [J]. Nature, 2019, 572(7771):614-619. |
[85] | FERGUSON D, EICHLER S J, YIEW N K H, et al.. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism [J/OL]. Mol. Metab., 2023,70:101694 [2024-01-03]. . |
[86] | WHITE P J, MCGARRAH R W, GRIMSRUD P A, et al.. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase [J]. Cell Metab., 2018, 27(6):1281-1293. |
[87] | XU M M, CHE L, NIU L Z, et al.. Molecular mechanism of valine and its metabolite in improving triglyceride synthesis of porcine intestinal epithelial cells [J/OL]. Sci. Rep., 2023,13(1):2933 [2024-01-03]. . |
[88] | SHOU J, CHEN P J, XIAO W H. The effects of BCAAs on insulin resistance in athletes [J]. J. Nutr. Sci. Vitaminol., 2019,65(5):383-389. |
[89] | SCHWEIGER M, SCHREIBER R, HAEMMERLE G, et al.. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism [J]. J. Biol. Chem., 2006, 281(52):40236-40241. |
[90] | CARLING D.The AMP-activated protein kinase cascade:a unifying system for energy control [J]. Trends Biochem. Sci., 2004, 29(1):18-24. |
[91] | CLARET M, SMITH M A, BATTERHAM R L, et al.. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons [J]. J. Clin. Invest., 2007, 117(8):2325-2336. |
[92] | LOPEZ-MEJIA I C, LAGARRIGUE S, GIRALT A, et al.. CDK4 phosphorylates AMPKα2 to inhibit its activity and repress fatty acid oxidation [J]. Mol. Cell, 2017, 68(2):336-349. |
[93] | ZHU Q Z, AN Y A, SCHERER P E.Mitochondrial regulation and white adipose tissue homeostasis [J]. Trends Cell Biol., 2022, 32(4):351-364. |
[94] | POLITIS-BARBER V, BRUNETTA H S, PAGLIALUNGA S, et al.. Long-term,high-fat feeding exacerbates short-term increases in adipose mitochondrial reactive oxygen species,without impairing mitochondrial respiration [J]. Am. J. Physiol.Endocrinol.Metab.,2020, 319(2):376-387. |
[95] | KASTANIOTIS A J, AUTIO K J, KERÄTÄR J M, et al.. Mitochondrial fatty acid synthesis,fatty acids and mitochondrial physiology [J]. Biochim.Biophys.Acta Mol. Cell Biol. Lipids, 2017, 1862(1):39-48. |
[96] | FREYRE C A C, RAUHER P C, EJSING C S, et al.. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes [J]. Mol. Cell, 2019,76(5):811-825. |
[97] | BOGDANOVIC E, KRAUS N, PATSOURIS D, et al.. Endoplasmic reticulum stress in adipose tissue augments lipolysis [J]. J. Cell. Mol. Med., 2015, 19(1):82-91. |
[98] | PARK K, JU S, KIM N, et al.. The Golgi complex:a hub of the secretory pathway [J]. BMB Rep., 2021, 54(5):246-252. |
[99] | DING L G, HUWYLER F, LONG F, et al.. Glucose controls lipolysis through Golgi PtdIns4P-mediated regulation of ATGL [J]. Nat. Cell Biol., 2024, 26(4):552-566. |
[100] | MIZUSHIMA N, KOMATSU M. Autophagy:renovation of cells and tissues [J]. Cell, 2011, 147(4):728-741. |
[101] | ZHANG H R. Lysosomal acid lipase and lipid metabolism:new mechanisms,new questions,and new therapies [J]. Curr. Opin. Lipidol., 2018, 29(3):218-223. |
[102] | DUBLAND J A, FRANCIS G A. Lysosomal acid lipase:at the crossroads of normal and atherogenic cholesterol metabolism [J/OL]. Front. Cell Dev. Biol., 2015,3:3 [2024-01-03]. . |
[103] | BIANCO V, SVECLA M, VINGIANI G B, et al.. Regional differences in the small intestinal proteome of control mice and of mice lacking lysosomal acid lipase [J]. J. Proteome Res., 2024, 23(4):1506-1518. |
[1] | 张奕萱, 李慧峰, 黄咏梅, 李彦青, 滑金锋, 银捷, 陈天渊, 肖冬, 莫云川. 不同菜用甘薯品种茎尖代谢产物鉴定及途径分析[J]. 中国农业科技导报, 2025, 27(2): 62-69. |
[2] | 屈施旭, 孙宇, 所怡祯, 苑海鹏, 张玉红. 外源钙对盐胁迫下火麻生理特性及次生代谢产物的影响[J]. 中国农业科技导报, 2025, 27(2): 80-88. |
[3] | 王翻兄, 徐英, 沙玉柱, 邵鹏阳, 谢转回, 李文浩, 王继卿, 李少斌, 陈小伟, 杨文鑫, 刘秀. 不同年龄藏绵羊肌肉脂肪酸特征分析[J]. 中国农业科技导报, 2024, 26(8): 74-83. |
[4] | 蒋飞, 施永海, 徐嘉波, 严银龙, 刘永士, 袁新程. 2种饲料投喂下美洲鲥幼鱼肌肉营养成分分析及评价[J]. 中国农业科技导报, 2024, 26(5): 223-233. |
[5] | 刘源, 张秀妍, 徐妙云, 郑红艳, 邹俊杰, 张兰, 王磊. 水稻干旱胁迫的small RNA转录组分析[J]. 中国农业科技导报, 2021, 23(6): 23-32. |
[6] | 张豪洋,金伊楠,孙燕鑫,李子玮,郭笑恒,许自成*. 植物microRNAs在干旱胁迫响应中的研究进展[J]. 中国农业科技导报, 2021, 23(4): 27-36. |
[7] | 何彦1,姜峰2,于莎1,于春欣1,谭伟明1,李召虎1,张杰3,段留生1*. PoprL启动子对丁香假单胞菌DC3000合成冠菌素的影响[J]. 中国农业科技导报, 2021, 23(2): 81-88. |
[8] | 张秀妍1,2,徐妙云2,郑红艳2,邹俊杰2,张笑宇1*,王磊2*. 盐胁迫下水稻体内miRNA表达谱分析[J]. 中国农业科技导报, 2020, 22(12): 10-19. |
[9] | 白皓1,杨宝龙2,董钊绮2,李潇凡2,江勇2,常国斌1,2,陈国宏1,2*. miRNA调控畜禽剩余采食量的研究进展[J]. 中国农业科技导报, 2020, 22(11): 63-68. |
[10] | 李晓, 王晓璐, 王颖, 姜晓东, 李红艳, 刘天红, 吴志宏, 纪蕾. 盐度对养殖凡纳滨对虾肌肉营养成分的影响[J]. 中国农业科技导报, 2020, 22(1): 130-137. |
[11] | 朱畇昊1,2,李璐1,赵乐1,2,董诚明1,2*. 地黄次生代谢产物生物合成基因表达水平与其含量的相关性分析[J]. 中国农业科技导报, 2018, 20(11): 36-43. |
[12] | 赵俊星1, 岳万福2. 表观遗传调控骨骼肌发育的研究进展(英文)[J]. , 2014, 16(3): 42-47. |
[13] | 唐克轩,沈乾,付雪晴,颜廷祥. 植物次生代谢产物生物反应器研究进展[J]. , 2014, 16(1): 7-15. |
[14] | 徐妙云,王磊. microRNA与植物花发育调控的研究进展[J]. , 2011, 13(2): 9-16. |
[15] | 王芹芹1,陈旭生2,Pieter Bas Kwak1,邱承祥1,刘飞1,马晓杰2,杨志敏1. 陆地棉胚珠及纤维发育过程中miRNA分离与鉴定[J]. , 2010, 12(5): 68-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||