中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (3): 48-56.DOI: 10.13304/j.nykjdb.2021.0599
秦宁1(), 李俊茹1, 田蕊1, 邵振启1, 李喜焕1(
), 张彩英2(
)
收稿日期:
2021-07-21
接受日期:
2021-09-22
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
李喜焕,张彩英
作者简介:
秦宁 E-mail: 1362822834@qq.com
基金资助:
Ning QIN1(), Junru LI1, Rui TIAN1, Zhenqi SHAO1, Xihuan LI1(
), Caiying ZHANG2(
)
Received:
2021-07-21
Accepted:
2021-09-22
Online:
2022-03-15
Published:
2022-03-14
Contact:
Xihuan LI,Caiying ZHANG
摘要:
生育酚具有抗氧化、防止人体动脉硬化和心血管疾病等多种功效,在大豆籽粒中含量丰富,但有关其遗传位点与基因发掘工作开展甚少。鉴于此,利用大豆重组自交系群体,通过高效液相色谱鉴定其籽粒生育酚,结合群体SNP连锁图谱与转录组数据,发掘其遗传位点并筛选候选基因。结果表明,供试群体籽粒生育酚存在较大遗传变异,α-、γ-、δ-生育酚及总生育酚含量变异系数分布在9.24%~36.62%之间,各组分占比的变异系数分布在5.05%~35.59%之间;发掘到7个控制生育酚及其组分一因多效QTLs,表型贡献率范围3.08%~21.92%,其中8号染色体qTOC?A2可同时控制α-、δ-和总生育酚含量以及α-生育酚占比和γ-生育酚占比,表型贡献率范围3.85%~6.77%;5号染色体qTOC?A1可同时控制α-生育酚及其占比、γ-生育酚及其占比以及总生育酚含量,表型贡献率范围6.34%~21.92%;筛选到Glyma.12G014200、Glyma.12G014300和Glyma.18G141100等参与大豆生育酚合成代谢候选基因,为进一步开展生育酚分子遗传改良与遗传机制解析提供了选择标记及基因。
中图分类号:
秦宁, 李俊茹, 田蕊, 邵振启, 李喜焕, 张彩英. 大豆籽粒生育酚遗传位点发掘及候选基因筛选[J]. 中国农业科技导报, 2022, 24(3): 48-56.
Ning QIN, Junru LI, Rui TIAN, Zhenqi SHAO, Xihuan LI, Caiying ZHANG. Mining of Genetic Loci and Screening of Candidate Genes for Seed Tocopherol Content in Soybean[J]. Journal of Agricultural Science and Technology, 2022, 24(3): 48-56.
项目 Item | 均值 Mean | 标准差 SD | 变异系数 CV/% | 最大值 Max | 最小值 Min | 偏度 Skew | 峰度 Kurt | 显著性(P值) Sig. (P value) |
---|---|---|---|---|---|---|---|---|
α-生育酚 α-tocopherol/(μg·g‒1) | 7.10 | 2.60 | 36.62 | 15.48 | 0.91 | 0.39 | 0.15 | 2.54×10‒10 |
γ-生育酚 γ-tocopherol/(μg·g‒1) | 127.86 | 12.19 | 9.53 | 165.23 | 97.34 | 0.33 | -0.17 | 2.50×10‒10 |
δ-生育酚 δ-tocopherol/(μg·g‒1) | 65.65 | 9.21 | 14.03 | 90.58 | 39.13 | -0.06 | -0.16 | 2.34×10‒10 |
总生育酚 Total-tocopherol/(μg·g‒1) | 200.61 | 18.53 | 9.24 | 253.90 | 149.13 | 0.04 | -0.12 | 1.67×10‒10 |
α-生育酚占比 α-tocopherol proportion/% | 3.54 | 1.26 | 35.59 | 7.62 | 0.56 | 0.34 | -0.04 | 3.23×10‒10 |
γ-生育酚占比 γ-tocopherol proportion/% | 63.80 | 3.22 | 5.05 | 74.47 | 54.54 | 0.05 | 0.35 | 2.78×10‒10 |
δ-生育酚占比 δ-tocopherol proportion/% | 32.66 | 2.84 | 8.70 | 40.55 | 24.32 | -0.07 | 0.09 | 2.52×10‒10 |
表1 供试大豆RIL群体籽粒生育酚及其组分遗传变异
Table 1 Genetic variations of seed tocopherol and its components in RIL population
项目 Item | 均值 Mean | 标准差 SD | 变异系数 CV/% | 最大值 Max | 最小值 Min | 偏度 Skew | 峰度 Kurt | 显著性(P值) Sig. (P value) |
---|---|---|---|---|---|---|---|---|
α-生育酚 α-tocopherol/(μg·g‒1) | 7.10 | 2.60 | 36.62 | 15.48 | 0.91 | 0.39 | 0.15 | 2.54×10‒10 |
γ-生育酚 γ-tocopherol/(μg·g‒1) | 127.86 | 12.19 | 9.53 | 165.23 | 97.34 | 0.33 | -0.17 | 2.50×10‒10 |
δ-生育酚 δ-tocopherol/(μg·g‒1) | 65.65 | 9.21 | 14.03 | 90.58 | 39.13 | -0.06 | -0.16 | 2.34×10‒10 |
总生育酚 Total-tocopherol/(μg·g‒1) | 200.61 | 18.53 | 9.24 | 253.90 | 149.13 | 0.04 | -0.12 | 1.67×10‒10 |
α-生育酚占比 α-tocopherol proportion/% | 3.54 | 1.26 | 35.59 | 7.62 | 0.56 | 0.34 | -0.04 | 3.23×10‒10 |
γ-生育酚占比 γ-tocopherol proportion/% | 63.80 | 3.22 | 5.05 | 74.47 | 54.54 | 0.05 | 0.35 | 2.78×10‒10 |
δ-生育酚占比 δ-tocopherol proportion/% | 32.66 | 2.84 | 8.70 | 40.55 | 24.32 | -0.07 | 0.09 | 2.52×10‒10 |
项目 Item | α-生育酚 α-tocopherol | γ-生育酚 γ-tocopherol | δ-生育酚 δ-tocopherol | 总生育酚 Total-tocopherol | α-生育酚占比 α-tocopherol proportion | γ-生育酚占比 γ-tocopherol proportion |
---|---|---|---|---|---|---|
γ-生育酚 γ-tocopherol | ‒0.018 | |||||
δ-生育酚 δ-tocopherol | 0.256** | 0.410** | ||||
总生育酚 Total-tocopherol | 0.256** | 0.859** | 0.803** | |||
α-生育酚占比 α-tocopherol proportion | 0.966** | ‒0.237** | 0.064 | 0.011 | ||
γ-生育酚占比 γ-tocopherol proportion | ‒0.515** | 0.298** | ‒0.713** | ‒0.231** | ‒0.479** | |
δ-生育酚占比 δ-tocopherol proportion | 0.154** | ‒0.233** | 0.780** | 0.256** | 0.098 | ‒0.921** |
表2 供试大豆RIL群体籽粒生育酚及各组分相关系数
Table 2 Correlation coefficients of tocopherol and its components in RIL population
项目 Item | α-生育酚 α-tocopherol | γ-生育酚 γ-tocopherol | δ-生育酚 δ-tocopherol | 总生育酚 Total-tocopherol | α-生育酚占比 α-tocopherol proportion | γ-生育酚占比 γ-tocopherol proportion |
---|---|---|---|---|---|---|
γ-生育酚 γ-tocopherol | ‒0.018 | |||||
δ-生育酚 δ-tocopherol | 0.256** | 0.410** | ||||
总生育酚 Total-tocopherol | 0.256** | 0.859** | 0.803** | |||
α-生育酚占比 α-tocopherol proportion | 0.966** | ‒0.237** | 0.064 | 0.011 | ||
γ-生育酚占比 γ-tocopherol proportion | ‒0.515** | 0.298** | ‒0.713** | ‒0.231** | ‒0.479** | |
δ-生育酚占比 δ-tocopherol proportion | 0.154** | ‒0.233** | 0.780** | 0.256** | 0.098 | ‒0.921** |
QTL | 单个QTL Individual QTL | 性状 Trait | 染色体Chromo-some | 左标记 Left marker | 物理位置 Physical position | 右标记 Right marker | 物理位置 Physical position | 遗传位置Genetic position | LOD | 贡献率 PVE/% | 加性效应 Additive | 区间 Confidence interval | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左Left | 右Right | ||||||||||||
qTOC‑A2 | qα‑TOC‑A2 | α-生育酚 α-tocopherol | 8 | ss715602131 | 43 896 715 | ss715602331 | 45 913 059 | 268.4 | 5.2 | 6.26 | 0.691 | 256.4 | 269.4 |
qδ‑TOC‑A2 | δ-生育酚 δ-tocopherol | 258.2 | 3.6 | 6.77 | 2.726 | 244.6 | 269.4 | ||||||
qTotal‑TOC‑A2 | 总生育酚Total-tocopherol | 266.3 | 3.4 | 4.98 | 3.981 | 252.9 | 269.4 | ||||||
qα‑/Total‑TOC‑A2 | α-生育酚占比 α-tocopherol proportion | 267.5 | 3.3 | 4.08 | 0.269 | 253.6 | 269.4 | ||||||
qγ‑/Total‑TOC‑A2 | γ-生育酚占比 γ-tocopherol proportion | 255.1 | 2.5 | 3.85 | -0.748 | 239.3 | 269.4 | ||||||
qTOC‑A1 | qα‑TOC‑A1 | α-生育酚 α-tocopherol | 5 | ss715591799 | 40 916 521 | ss715591790 | 40 974 254 | 98.2 | 7.5 | 8.52 | 0.801 | 97.3 | 98.7 |
qγ‑/Total‑TOC‑A1 | γ-生育酚占比 γ-tocopherol proportion | 98.2 | 6.0 | 6.34 | -0.956 | 97.4 | 98.7 | ||||||
qγ‑TOC‑A1 | γ-生育酚 γ-tocopherol | ss715591790 | 40 974 254 | ss715591780 | 41 007 475 | 98.7 | 18.1 | 21.92 | -5.564 | 98.2 | 98.7 | ||
qα‑/Total‑TOC‑A1 | α-生育酚占比 α-tocopherol proportion | 98.3 | 11.9 | 13.72 | 0.491 | 98.2 | 98.7 | ||||||
qTotal‑TOC‑A1 | 总生育酚Total-tocopherol | ss715591954 | 39 886 822 | ss715591831 | 40 684 517 | 94.3 | 9.1 | 12.32 | -6.226 | 90.4 | 96.4 | ||
qTOC‑H | qα‑TOC‑H | α-生育酚 α-tocopherol | 12 | ss715611499 | 1 379 873 | ss715613700 | 980 800 | 153.7 | 5.5 | 6.22 | -0.685 | 147.8 | 153.7 |
qα‑/Total‑TOC‑H | α-生育酚占比 α-tocopherol proportion | 152.9 | 5.1 | 5.83 | -0.320 | 147.5 | 157.9 | ||||||
qγ‑/Total‑TOC‑H | γ-生育酚占比 γ-tocopherol proportion | 153.8 | 3.9 | 4.10 | 0.769 | 150.0 | 156.7 | ||||||
qTOC‑F | qγ‑TOC‑F | γ-生育酚 γ-tocopherol | 13 | ss715616114 | 39 590 255 | ss715616142 | 39 911 642 | 116.6 | 6.6 | 7.53 | -3.272 | 115.7 | 119.2 |
qTotal‑TOC‑F | 总生育酚Total-tocopherol | 116.5 | 5.0 | 6.26 | -4.454 | 115.7 | 119.4 | ||||||
qTOC‑G | qδ‑TOC‑G | δ-生育酚 δ-tocopherol | 18 | ss715629792 | 20 419 500 | ss715629811 | 20 502 705 | 104.5 | 3.8 | 4.50 | 2.222 | 104.4 | 104.8 |
qTotal‑TOC‑G | 总生育酚Total-tocopherol | ss715629923 | 21 629 092 | ss715629930 | 21 908 634 | 106.4 | 2.7 | 3.21 | 3.191 | 105.5 | 106.8 | ||
qδ‑/Total‑TOC‑G | δ-生育酚占比 δ-tocopherol proportion | ss715629675 | 19 772 410 | ss715629709 | 19 955 096 | 103.6 | 3.4 | 6.19 | 0.643 | 103.3 | 103.6 | ||
qTOC‑L | qα‑TOC‑L | α-生育酚 α-tocopherol | 19 | ss715633071 | 514 053 | ss715636028 | 580 135 | 116.0 | 4.9 | 5.43 | 0.639 | 115.8 | 116.8 |
qα‑/Total‑TOC‑L | α-生育酚占比 α-tocopherol proportion | ss715636293 | 809 326 | ss715636173 | 674 202 | 110.1 | 5.2 | 5.77 | 0.318 | 104.0 | 113.4 | ||
qTOC‑M | qγ‑TOC‑M | γ-生育酚 γ-tocopherol | 7 | ss715598313 | 5 265 136 | ss715598195 | 4 429 189 | 99.2 | 3.5 | 4.43 | 2.503 | 92.2 | 107.6 |
qTotal‑TOC‑M | 总生育酚Total-tocopherol | ss715597765 | 3 872 947 | ss715597135 | 3 167 571 | 110.1 | 2.6 | 3.08 | 3.112 | 109.2 | 115.8 |
表3 供试大豆RIL群体籽粒生育酚及其各组分一因多效QTLs
Table 3 Pleiotropic QTLs of seed tocopherol and its components in soybean RIL population
QTL | 单个QTL Individual QTL | 性状 Trait | 染色体Chromo-some | 左标记 Left marker | 物理位置 Physical position | 右标记 Right marker | 物理位置 Physical position | 遗传位置Genetic position | LOD | 贡献率 PVE/% | 加性效应 Additive | 区间 Confidence interval | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左Left | 右Right | ||||||||||||
qTOC‑A2 | qα‑TOC‑A2 | α-生育酚 α-tocopherol | 8 | ss715602131 | 43 896 715 | ss715602331 | 45 913 059 | 268.4 | 5.2 | 6.26 | 0.691 | 256.4 | 269.4 |
qδ‑TOC‑A2 | δ-生育酚 δ-tocopherol | 258.2 | 3.6 | 6.77 | 2.726 | 244.6 | 269.4 | ||||||
qTotal‑TOC‑A2 | 总生育酚Total-tocopherol | 266.3 | 3.4 | 4.98 | 3.981 | 252.9 | 269.4 | ||||||
qα‑/Total‑TOC‑A2 | α-生育酚占比 α-tocopherol proportion | 267.5 | 3.3 | 4.08 | 0.269 | 253.6 | 269.4 | ||||||
qγ‑/Total‑TOC‑A2 | γ-生育酚占比 γ-tocopherol proportion | 255.1 | 2.5 | 3.85 | -0.748 | 239.3 | 269.4 | ||||||
qTOC‑A1 | qα‑TOC‑A1 | α-生育酚 α-tocopherol | 5 | ss715591799 | 40 916 521 | ss715591790 | 40 974 254 | 98.2 | 7.5 | 8.52 | 0.801 | 97.3 | 98.7 |
qγ‑/Total‑TOC‑A1 | γ-生育酚占比 γ-tocopherol proportion | 98.2 | 6.0 | 6.34 | -0.956 | 97.4 | 98.7 | ||||||
qγ‑TOC‑A1 | γ-生育酚 γ-tocopherol | ss715591790 | 40 974 254 | ss715591780 | 41 007 475 | 98.7 | 18.1 | 21.92 | -5.564 | 98.2 | 98.7 | ||
qα‑/Total‑TOC‑A1 | α-生育酚占比 α-tocopherol proportion | 98.3 | 11.9 | 13.72 | 0.491 | 98.2 | 98.7 | ||||||
qTotal‑TOC‑A1 | 总生育酚Total-tocopherol | ss715591954 | 39 886 822 | ss715591831 | 40 684 517 | 94.3 | 9.1 | 12.32 | -6.226 | 90.4 | 96.4 | ||
qTOC‑H | qα‑TOC‑H | α-生育酚 α-tocopherol | 12 | ss715611499 | 1 379 873 | ss715613700 | 980 800 | 153.7 | 5.5 | 6.22 | -0.685 | 147.8 | 153.7 |
qα‑/Total‑TOC‑H | α-生育酚占比 α-tocopherol proportion | 152.9 | 5.1 | 5.83 | -0.320 | 147.5 | 157.9 | ||||||
qγ‑/Total‑TOC‑H | γ-生育酚占比 γ-tocopherol proportion | 153.8 | 3.9 | 4.10 | 0.769 | 150.0 | 156.7 | ||||||
qTOC‑F | qγ‑TOC‑F | γ-生育酚 γ-tocopherol | 13 | ss715616114 | 39 590 255 | ss715616142 | 39 911 642 | 116.6 | 6.6 | 7.53 | -3.272 | 115.7 | 119.2 |
qTotal‑TOC‑F | 总生育酚Total-tocopherol | 116.5 | 5.0 | 6.26 | -4.454 | 115.7 | 119.4 | ||||||
qTOC‑G | qδ‑TOC‑G | δ-生育酚 δ-tocopherol | 18 | ss715629792 | 20 419 500 | ss715629811 | 20 502 705 | 104.5 | 3.8 | 4.50 | 2.222 | 104.4 | 104.8 |
qTotal‑TOC‑G | 总生育酚Total-tocopherol | ss715629923 | 21 629 092 | ss715629930 | 21 908 634 | 106.4 | 2.7 | 3.21 | 3.191 | 105.5 | 106.8 | ||
qδ‑/Total‑TOC‑G | δ-生育酚占比 δ-tocopherol proportion | ss715629675 | 19 772 410 | ss715629709 | 19 955 096 | 103.6 | 3.4 | 6.19 | 0.643 | 103.3 | 103.6 | ||
qTOC‑L | qα‑TOC‑L | α-生育酚 α-tocopherol | 19 | ss715633071 | 514 053 | ss715636028 | 580 135 | 116.0 | 4.9 | 5.43 | 0.639 | 115.8 | 116.8 |
qα‑/Total‑TOC‑L | α-生育酚占比 α-tocopherol proportion | ss715636293 | 809 326 | ss715636173 | 674 202 | 110.1 | 5.2 | 5.77 | 0.318 | 104.0 | 113.4 | ||
qTOC‑M | qγ‑TOC‑M | γ-生育酚 γ-tocopherol | 7 | ss715598313 | 5 265 136 | ss715598195 | 4 429 189 | 99.2 | 3.5 | 4.43 | 2.503 | 92.2 | 107.6 |
qTotal‑TOC‑M | 总生育酚Total-tocopherol | ss715597765 | 3 872 947 | ss715597135 | 3 167 571 | 110.1 | 2.6 | 3.08 | 3.112 | 109.2 | 115.8 |
图2 大豆8号染色体籽粒生育酚一因多效QTL及其候选基因注:Z—郑92116; Q—齐黄30。
Fig. 2 Pleiotropic QTL and candidate gene for soybean seed tocopherol and its components on chromosome 8Note: Z— Zheng 92116; Q—Qihuang 30.
图3 大豆5号染色体籽粒生育酚一因多效QTL及其候选基因注:Z—郑92116; Q—齐黄30。
Fig. 3 Pleiotropic QTL and candidate gene for soybean seed tocopherol and its components on chromosome 5Note: Z— Zheng 92116; Q—Qihuang 30.
图4 大豆12号、18号和19号染色体生育酚候选基因注:Z—郑92116; Q—齐黄30。
Fig. 4 Candidate gene for soybean tocopherol on chromosomes 12, 18 and 19Note: Z— Zheng 92116; Q—Qihuang 30.
1 | 赵亚民,张丽静,傅华.维生素E在饲草及畜产品中的应用研究[J].草业科学, 2011, 28(6): 1167-1172. |
ZHAO Y M, ZHANG L J, FU H. Application study of vitamin E in forage grass and livestock products [J]. Pratacul. Sci., 2011, 28(6): 1167-1172. | |
2 | 赵贵兴.高维生素E含量大豆胚芽油的制备及其微胶囊化研究[J].农业工程, 2012, 2(4): 34-41. |
ZHAO G X. Preparation of soybean embryo oil with high content of vitamin E and research of its microencapsulation [J]. Agric. Eng., 2012, 2(4): 34-41. | |
3 | 张红梅,李海朝,文自翔,等.大豆籽粒维生素E含量的QTL分析[J].作物学报, 2015, 41(2): 187-196. |
ZHANG H M, LI H C, WEN Z Y, et al.. Identification of QTL associated with vitamin E content in soybean seeds [J]. Acta Agron. Sin., 2015, 41(2): 187-196. | |
4 | MUNNE B S. The role of α-tocophherol in plant stress tolerance [J]. J. Plant Physiol., 2005, 162: 743-748. |
5 | BURTON G W. Vitamin E: molecular and biological function [J]. P. Nutr. Soc., 1994, 53(2): 251-262. |
6 | BRAMLEY P, ELMADFA I, KAFATOS A, et al.. Vitamin E [J]. J. Sci. Food Agric., 2000, 80(7): 913-938. |
7 | BURING J E, HENNEKENS C H. Antioxidant vitamins and cardiovascular disease [J]. Nutr. Rev., 1997, 55: S53-S60. |
8 | RAEDERSTORFF D, WYSS A, CALDER P C, et al.. Vitamin E function and requirements in relation to PUFA [J]. Brit. J. Nutr., 2015, 114: 1113-1122. |
9 | SATO K, GOSHO M, YAMAMOTO T, et al.. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: a meta-analysis of randomized controlled trials [J]. Nutrition, 2015, 31: 923-930. |
10 | CAO Y C, LI S G, WANG Z L, et al.. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping [J/OL]. Front. Plant Sci., 2017, 8: 1222 [2021-11-15]. . |
11 | 李禄慧,徐妙云,张兰,等.不同作物中维生素E含量的测定和比较[J].中国农学通报, 2011, 27(26): 124-128. |
LI L H, XU M Y, ZHANG L, et al.. Determinate and analysis the content of vitamin E in different species [J]. Chin. Agric. Sci. Bull., 2011, 27(26): 124-128. | |
12 | 刘焕成,韩英鹏,腾卫丽,等.东北大豆与北美大豆维生素E含量的分析[J].大豆科学, 2008, 27(6): 925-928. |
LIU H C, HAN Y P, TENG W L, et al.. Analysis of vitamin E content in soybeans derived from northeast China and north America [J]. Soybean Sci., 2008, 27(6): 925-928. | |
13 | 李海燕.大豆维生素E含量的遗传分析及QTL定位[D].哈尔滨:东北林业大学, 2010. |
LI H Y. Genetic and QTL analysis of the content of vitamin E in soybean [D]. Harbin: Northeast Forestry University, 2010. | |
14 | 梁慧珍,许兰杰,董薇,等.大豆γ-生育酚的混合遗传分析与QTL定位[J].中国农业科学, 2020, 53(11): 2149-2160. |
LIANG H Z, XU L J, DONG W, et al.. Mixed inheritance analysis and QTL mapping for γ-tocopherol content in soybean [J]. Sci. Agric. Sin., 2020, 53(11): 2149-2160. | |
15 | 刘焕成.大豆维生素E遗传变异、QTL及环境互作效应分析[D].哈尔滨:东北农业大学, 2017. |
LIU H C. Genetic variation, QTL and QTL-by-environment interactions for seed vitamin E in soybean [D]. Harbin: Northeast Agricultural University, 2017. | |
16 | ZHAN Y H, LI H Y, SUI M N, et al.. Genome wide association mapping for tocopherol concentration in soybean seeds across multiple environments [J]. Industrial Crops Products, 2020, 154: 112674. |
17 | SUI M N, JING Y, LI H Y, et al.. Identification of loci and candidate genes analyses for tocopherol concentration of soybean seed [J/OL]. Front. Plant Sci., 2020, 11: 539460 [2021-11-15]. . |
18 | LI X H, KAMALA S, TIAN R, et al.. Identification and validation of quantitative trait loci controlling seed isoflavone content across multiple environments and backgrounds in soybean [J/OL]. Mol. Breeding, 2018, 38(1): 8 [2021-11-15]. . |
19 | 秦宁,李俊茹,李文龙,等.大豆籽粒生育酚及其组分含量鉴定与优异种质筛选[J].作物杂志, 2021, 3: 34-39. |
QIN N, LI J R, LI W L, et al.. Screening of elite germplasms and identification of seed tocopherol and its component contents in soybean [J]. Crops, 2021, 3: 34-39. | |
20 | LI X H, SHAO Z Q, TIAN R, et al.. Mining QTLs and candidate genes for seed protein and oil contents across multiple environments and backgrounds in soybean [J/OL]. Mol. Breeding, 2019, 39: 139 [2021-11-15]. . |
21 | LI H Y, LIU H C, HAN Y P, et al.. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments [J]. Theor. Appl. Genet., 2010, 120: 1405-1413. |
22 | LI H Y, WANG Y, HAN Y P, et al.. Mapping quantitative trait loci (QTLs) underlying seed vitamin E content in soybean with main, epistatic and QTL × environment effects [J]. Plant Breeding, 2016, 135: 208-214. |
23 | LIU H C, CAO G L, HAN Y P, et al.. Identification of the QTL underlying the vitamin E content of soybean seeds [J]. Plant Breeding, 2017, 136(2): 147-154. |
24 | SHAW E J, RAJCAN I. Molecular mapping of soybean seed tocopherols in the cross ‘OAC Bayfield’ × ‘OAC Shire’ [J]. Plant Breeding, 2017, 136(1): 83-93. |
25 | MACDUFF M. Validation of QTL associated with tocopherol levels in three half-sib populations derived from Keszthelyi Aproszemu Sarga Soybean [D]. Guelph: University of Guelph, 2011. |
[1] | 于丹蓉, 尚子琪, 仇世佐, 宋凤景, 于智慧, 张晓宇, 张晓艳. 不同种类豆粉营养成分和功能性质的比较分析[J]. 中国农业科技导报, 2025, 27(8): 144-154. |
[2] | 郑焕斌, 李明, 杨素欣, 吴委林. 大豆种质资源苗期耐碱筛选及评价分析[J]. 中国农业科技导报, 2025, 27(7): 54-71. |
[3] | 纪蕾, 姜晓东, 孙元芹, 刘天红, 李红艳, 李晓, 王颖, 张帅中. 大豆低聚肽和谷氨酰胺转氨酶对热煮后虹鳟鱼肉品质及蛋白质理化特性的影响[J]. 中国农业科技导报, 2025, 27(4): 149-156. |
[4] | 杨冰. 大豆疫霉菌的致病机制及寄主分子响应和防控方法研究进展[J]. 中国农业科技导报, 2025, 27(3): 133-142. |
[5] | 李娜, 张华, 邢馨竹, 邵振启, 杨占武, 李喜焕, 张彩英. 大豆扩展蛋白基因GmEXLA1在荚果发育中的功能鉴定[J]. 中国农业科技导报, 2025, 27(3): 49-59. |
[6] | 魏荣华, 尹明, 王文生, 崔彦茹. 基于BSA-seq发掘水稻抽穗期相关QTLs及候选基因[J]. 中国农业科技导报, 2024, 26(9): 12-24. |
[7] | 顿国强, 吴星澎, 纪欣鑫, 张福利, 纪文义, 杨永振. 双摆盘式大豆小区排种器的仿真优化[J]. 中国农业科技导报, 2024, 26(6): 82-90. |
[8] | 王文月, 姚志鹏, 于洋, 葛毅强. 我国大豆种业科技创新发展现状及对策建议[J]. 中国农业科技导报, 2024, 26(3): 1-6. |
[9] | 刘海霞, 张寅辉, 庄蕾, 郭梦娇, 赵李, 吴美娟, 侯健, 李甜, 刘红霞, 张学勇, 郝晨阳. 基于关联分析挖掘小麦SDS沉降值相关候选基因及KASP标记开发[J]. 中国农业科技导报, 2024, 26(12): 18-29. |
[10] | 杨皓森. 中国大豆生物育种产业化对贸易依存度的影响[J]. 中国农业科技导报, 2024, 26(11): 15-22. |
[11] | 姚建民, 马俊奎, 王忠祥, 毕昕媛, 李瑞珍, 杨瑞平, 刘钊, 郭丰辉. 全生物降解渗水地膜在大豆-玉米带状复合种植中的应用效果研究[J]. 中国农业科技导报, 2023, 25(9): 178-185. |
[12] | 田蕊, 张华, 黄玫红, 邵振启, 李喜焕, 张彩英. 大豆抗旱遗传位点及候选基因发掘[J]. 中国农业科技导报, 2023, 25(9): 69-82. |
[13] | 张晨阳, 徐明岗, 王斐, 李然, 孙楠. 施用有机肥对我国大豆产量及土壤养分的影响[J]. 中国农业科技导报, 2023, 25(8): 148-156. |
[14] | 柯博洋, 李文龙, 张彩英. 大豆SWEET 基因在荚粒发育过程中与逆境胁迫下的表达[J]. 中国农业科技导报, 2023, 25(8): 33-52. |
[15] | 孙亚倩, 陈士亮, 褚佳豪, 李喜焕, 张彩英. 基于BSA-seq结合连锁分析发掘大豆荚粒性状QTLs及候选基因[J]. 中国农业科技导报, 2023, 25(7): 29-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||