中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (1): 202-210.DOI: 10.13304/j.nykjdb.2021.0087
黄英1(), 彭晴1, 王荃2, 徐小轻1, 张宇微1, 马蓝1, 石波1, 乔宇1(
)
收稿日期:
2021-01-26
接受日期:
2021-04-14
出版日期:
2022-01-15
发布日期:
2022-01-25
通讯作者:
乔宇
作者简介:
黄英 E-mail:huangying9617@163.com;
基金资助:
Yin HUANG1(), Qing PENG1, Quan WANG2, Xiaoqing XU1, Yuwei ZHANG1, Lan MA1, Bo SHI1, Yu QIAO1(
)
Received:
2021-01-26
Accepted:
2021-04-14
Online:
2022-01-15
Published:
2022-01-25
Contact:
Yu QIAO
摘要:
为建立一种快速检测芽孢杆菌细胞毒性的方法,通过比较不同的细胞以及活性测定方法,确立以非洲绿猴肾细胞(Vero细胞)为受试细胞,MTT比色法作为芽孢杆菌代谢物细胞毒性的检测方法,并对检测条件进行了优化。利用优化后的方法对81株不同来源芽孢杆菌的细胞毒性进行检测,发现有16株芽孢杆菌具有细胞毒性。通过毒素编码基因PCR、溶血性试验和抗体免疫反应试验进一步验证了16株芽胞杆菌的毒性。与体外测定方法相比,建立的细胞毒性检测方法具有更高的灵敏性,且适用于不同株系芽孢杆菌在细胞水平的安全性评价,具有较高的推广应用价值。
中图分类号:
黄英, 彭晴, 王荃, 徐小轻, 张宇微, 马蓝, 石波, 乔宇. 一种用于芽孢杆菌代谢物细胞毒性的快速检测方法[J]. 中国农业科技导报, 2022, 24(1): 202-210.
Yin HUANG, Qing PENG, Quan WANG, Xiaoqing XU, Yuwei ZHANG, Lan MA, Bo SHI, Yu QIAO. [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 202-210.
基因名称 Gene name | 引物序列 Primer sequence (5’-3’) | 片段长度 Fragment length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
ces | F: GGTGACACATTATCATATAAGGTG | 1 271 | 54 |
R: GTAAGCGAACCTGTCTGTAACAACA | |||
entFM | F: ATGAAAAAAGTAATTTGCAGG | 1 269 | 55 |
R: TTAGTATGCTTTTGTGTAACC | |||
CytK | F: CGACGTCACAAGTTGTAACA | 565 | 54 |
R: CGTGTGTAAATACCCAGTT | |||
hblA | F: AAGCAATGGAATACAATGGG | 1 154 | 56 |
R: AGAATCTAAATCATGCCACTGC | |||
hblC | F: GATACTAATGTGGCAACTGC | 740 | 58 |
R: TTGAGACTGCTCGTTAGTTG | |||
hblD | F: ACCGGTAACACTATTCATGC | 829 | 58 |
R: GAGTCCATATGCTTAGATGC | |||
nheA | F: GTTAGGATCACAATCACCGC | 755 | 56 |
R: ACGAATGTAATTTGAGTCGC | |||
nheB | F: TTTAGTAGTGGATCTGTACGC | 743 | 54 |
R: TTAATGTTCGTTAATCCTGC | |||
nheC | F: CGGTAGTGATTGCTGGG | 564 | 55 |
R: CAGCATTCGTACTTGCCAA |
表1 毒素编码基因的PCR引物
Table1 Primer of virulence genes for PCR
基因名称 Gene name | 引物序列 Primer sequence (5’-3’) | 片段长度 Fragment length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
ces | F: GGTGACACATTATCATATAAGGTG | 1 271 | 54 |
R: GTAAGCGAACCTGTCTGTAACAACA | |||
entFM | F: ATGAAAAAAGTAATTTGCAGG | 1 269 | 55 |
R: TTAGTATGCTTTTGTGTAACC | |||
CytK | F: CGACGTCACAAGTTGTAACA | 565 | 54 |
R: CGTGTGTAAATACCCAGTT | |||
hblA | F: AAGCAATGGAATACAATGGG | 1 154 | 56 |
R: AGAATCTAAATCATGCCACTGC | |||
hblC | F: GATACTAATGTGGCAACTGC | 740 | 58 |
R: TTGAGACTGCTCGTTAGTTG | |||
hblD | F: ACCGGTAACACTATTCATGC | 829 | 58 |
R: GAGTCCATATGCTTAGATGC | |||
nheA | F: GTTAGGATCACAATCACCGC | 755 | 56 |
R: ACGAATGTAATTTGAGTCGC | |||
nheB | F: TTTAGTAGTGGATCTGTACGC | 743 | 54 |
R: TTAATGTTCGTTAATCCTGC | |||
nheC | F: CGGTAGTGATTGCTGGG | 564 | 55 |
R: CAGCATTCGTACTTGCCAA |
菌株名称Strain | 粗毒素体积 Volume of crude toxin /μL | |||
---|---|---|---|---|
25 | 50 | 75 | 100 | |
蜡样芽孢杆菌CICC 21261 B. cereus CICC 21261 | 93.41±0.16 b | 93.69±0.07 a | 93.41±0.13 ab | 93.54±0.09 ab |
蜡样芽胞杆菌1-20 B. cereus 1-20 | 91.47±0.27 c | 94.26±0.04 a | 92.84±0.44 b | 93.45±0.22 b |
解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 50.00±0.39 b | 52.64±1.62 a | 50.94±0.25 ab | 50.96±0.36 ab |
表2 不同粗提物体积的细胞抑制率 (%)
Table 2 Inhibition rates of cells by different volumes of Bacillus crude extract
菌株名称Strain | 粗毒素体积 Volume of crude toxin /μL | |||
---|---|---|---|---|
25 | 50 | 75 | 100 | |
蜡样芽孢杆菌CICC 21261 B. cereus CICC 21261 | 93.41±0.16 b | 93.69±0.07 a | 93.41±0.13 ab | 93.54±0.09 ab |
蜡样芽胞杆菌1-20 B. cereus 1-20 | 91.47±0.27 c | 94.26±0.04 a | 92.84±0.44 b | 93.45±0.22 b |
解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 50.00±0.39 b | 52.64±1.62 a | 50.94±0.25 ab | 50.96±0.36 ab |
编号 Number | 菌株 Strain | 细胞抑制率 Inhibition rates of cells/% | 溶血性 Hemolysis | 抗体检测 Antibody test | 毒素编码基因 Toxin coding gene | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
正常处理 Normal | 热处理 Heat | Ces | entFM | CytK | hblA | hblC | hblD | nheA | nheB | nheC | ||||
1 | 蜡样芽孢杆菌1-13 B. cereus 1-13 | 93.57±0.11 a | 26.32±1.77 b | + | + | - | + | + | + | + | + | + | + | + |
2 | 蜡样芽胞杆菌1-19 B. cereus 1-19 | 93.60±0.05 a | 25.48±0.81 b | + | + | - | + | - | + | + | + | + | + | + |
3 | 蜡样芽胞杆菌1-20 B. cereus 1-20 | 94.26±0.04 a | 3.95±0.63 b | + | + | - | + | + | + | + | + | - | + | + |
4 | 枯草芽孢杆菌2-13 B.subtilis 2-13 | 54.00±0.42 a | 48.63±0.63 b | - | - | - | - | - | - | - | + | - | - | - |
5 | 枯草芽孢杆菌2-14 B.subtilis 2-14 | 54.30±0.82 a | 53.83±0.52 a | - | - | - | - | - | - | - | + | - | - | - |
6 | 枯草芽孢杆菌2-17 B.subtilis 2-17 | 65.38±1.40 a | 50.00±0.31 b | - | - | - | - | - | - | - | + | - | - | - |
7 | 解淀粉芽孢杆2-15 B. amyloliquefaciens 2-15 | 43.67±0.73 a | 45.93±0.59 b | - | - | - | - | - | - | - | + | - | - | - |
8 | 解淀粉芽孢杆菌3-29 B. amyloliquefaciens 3-29 | 33.29±0.90 a | 28.19±1.82 b | - | - | - | - | - | - | - | + | - | - | - |
9 | 解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 52.15±0.58 a | 50.78±0.29 a | - | - | - | - | - | - | - | + | - | - | - |
10 | 解淀粉芽孢杆菌1-17 B. amyloliquefaciens 1-17 | 52.07±0.50 a | 51.82±0.68 b | - | - | - | - | - | - | - | - | - | - | - |
11 | 解淀粉芽孢杆菌1-18 B. amyloliquefaciens 1-18 | 55.32±0.58 a | 54.82±0.80 a | - | - | - | - | - | - | - | + | - | - | - |
12 | 解淀粉芽孢杆菌3-33 B. amyloliquefaciens 3-33 | 62.91±0.90 a | 50.09±2.50 b | - | - | - | - | - | - | - | + | - | - | - |
13 | 贝莱斯芽孢杆菌2-16 B.velezensis 2-16 | 51.60±0.07 a | 50.64±1.30 a | - | - | - | - | - | - | - | - | - | - | - |
14 | 贝莱斯芽孢杆菌3-31 B.velezensis 3-31 | 63.29±0.44 a | 57.23±0.95 b | - | - | - | - | - | - | - | + | - | - | - |
15 | 贝莱斯芽孢杆菌3-32 B.velezensis 3-32 | 55.30±1.48 a | 38.41±1.91 b | - | - | - | - | - | - | - | - | - | - | - |
16 | 贝莱斯芽孢杆菌3-34 B.velezensis 3-34 | 55.26±0.67 a | 41.33±0.88 b | - | - | - | - | - | - | - | - | - | - | - |
表3 芽孢杆菌细胞毒性检测及毒素分析
Table 3 Cytotoxicity tests and toxin analysis of Bacillus
编号 Number | 菌株 Strain | 细胞抑制率 Inhibition rates of cells/% | 溶血性 Hemolysis | 抗体检测 Antibody test | 毒素编码基因 Toxin coding gene | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
正常处理 Normal | 热处理 Heat | Ces | entFM | CytK | hblA | hblC | hblD | nheA | nheB | nheC | ||||
1 | 蜡样芽孢杆菌1-13 B. cereus 1-13 | 93.57±0.11 a | 26.32±1.77 b | + | + | - | + | + | + | + | + | + | + | + |
2 | 蜡样芽胞杆菌1-19 B. cereus 1-19 | 93.60±0.05 a | 25.48±0.81 b | + | + | - | + | - | + | + | + | + | + | + |
3 | 蜡样芽胞杆菌1-20 B. cereus 1-20 | 94.26±0.04 a | 3.95±0.63 b | + | + | - | + | + | + | + | + | - | + | + |
4 | 枯草芽孢杆菌2-13 B.subtilis 2-13 | 54.00±0.42 a | 48.63±0.63 b | - | - | - | - | - | - | - | + | - | - | - |
5 | 枯草芽孢杆菌2-14 B.subtilis 2-14 | 54.30±0.82 a | 53.83±0.52 a | - | - | - | - | - | - | - | + | - | - | - |
6 | 枯草芽孢杆菌2-17 B.subtilis 2-17 | 65.38±1.40 a | 50.00±0.31 b | - | - | - | - | - | - | - | + | - | - | - |
7 | 解淀粉芽孢杆2-15 B. amyloliquefaciens 2-15 | 43.67±0.73 a | 45.93±0.59 b | - | - | - | - | - | - | - | + | - | - | - |
8 | 解淀粉芽孢杆菌3-29 B. amyloliquefaciens 3-29 | 33.29±0.90 a | 28.19±1.82 b | - | - | - | - | - | - | - | + | - | - | - |
9 | 解淀粉芽孢杆菌1-16 B. amyloliquefaciens 1-16 | 52.15±0.58 a | 50.78±0.29 a | - | - | - | - | - | - | - | + | - | - | - |
10 | 解淀粉芽孢杆菌1-17 B. amyloliquefaciens 1-17 | 52.07±0.50 a | 51.82±0.68 b | - | - | - | - | - | - | - | - | - | - | - |
11 | 解淀粉芽孢杆菌1-18 B. amyloliquefaciens 1-18 | 55.32±0.58 a | 54.82±0.80 a | - | - | - | - | - | - | - | + | - | - | - |
12 | 解淀粉芽孢杆菌3-33 B. amyloliquefaciens 3-33 | 62.91±0.90 a | 50.09±2.50 b | - | - | - | - | - | - | - | + | - | - | - |
13 | 贝莱斯芽孢杆菌2-16 B.velezensis 2-16 | 51.60±0.07 a | 50.64±1.30 a | - | - | - | - | - | - | - | - | - | - | - |
14 | 贝莱斯芽孢杆菌3-31 B.velezensis 3-31 | 63.29±0.44 a | 57.23±0.95 b | - | - | - | - | - | - | - | + | - | - | - |
15 | 贝莱斯芽孢杆菌3-32 B.velezensis 3-32 | 55.30±1.48 a | 38.41±1.91 b | - | - | - | - | - | - | - | - | - | - | - |
16 | 贝莱斯芽孢杆菌3-34 B.velezensis 3-34 | 55.26±0.67 a | 41.33±0.88 b | - | - | - | - | - | - | - | - | - | - | - |
1 | ERRINGTON J. Regulation of endospore formation in Bacillus subtilis [J]. Nat. Rev. Microbiol., 2003, 1(2):117-126. |
2 | ABRIOUEL H, FRANZ C M, OMAR N B, et al.. Diversity and applications of Bacillus bacteriocins [J]. Fems. Microbiol. Rev., 2011, 35(1):201-232. |
3 | 刘阳.益生芽孢杆菌机理探究及应用研究进展[J].四川农业科技,2020(3):64-67. |
LIU Y. Research progress on mechanism and application of probiotic Bacillus [J]. Sichuan Agric. Sci. Technol., 2020(3):64-67. | |
4 | NGUYEN A T, TALLENT S M. Screening food for Bacillus cereus toxins using whole genome sequencing [J]. Food Microbiol., 2019, 78:164-170. |
5 | OUOBA L I, THORSEN L, VARNAM A H. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments [J]. Int. J. Food Microbiol., 2008, 124(3):224-230. |
6 | ZHAO J, LV Q, LIU P, et al.. AlphaLISA for detection of staphylococcal enterotoxin B free from interference by protein A [J]. Toxicon, 2019, 165:62-68. |
7 | MORAVEK M, DIETRICH R, BUERK C, et al.. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses [J]. FEMS. Microbiol. Lett., 2006, 257(2):293-298. |
8 | MATHUR A, FENG S, HAYWARD J A, et al.. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome [J]. Nat. Microbiol., 2019, 4(2):362-374. |
9 | CAI Y, HUANG T, XU Y, et al.. Genetic and genomic diversity of NheABC locus from Bacillus strains [J]. Arch. Microbiol., 2017, 199(5):775-785. |
10 | CAROLINE C, EINAR G P. The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning [J]. Fems. Microbiol. Lett., 2002, 217(1):115-119. |
11 | PARVATHI A, KRISHNA K, JOSE J, et al.. Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in Cochin, India [J]. Bra. J. Microbiol., 2009, 40(2):269-275. |
12 | ROWAN N J, CALDOW G, GEMMELL C G, et al.. Production of diarrheal enterotoxins and other potential virulence factors by veterinary isolates of bacillus species associated with nongastrointestinal infections [J]. Appl. Environ. Microbiol., 2003, 69(4):2372-2376. |
13 | HARWOOD C R, JEAN-MARIE M, SUSANNE P, et al.. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group [J]. Fems. Microbiol. Rev., 2018, 42(6):721-738. |
14 | APETROAIE-CONSTANTIN C, MIKKOLA R, ANDERSSON M A, et al.. Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin [J]. J. Appl. Microbiol., 2010, 106(6):1976-1985. |
15 | HWANG Y H, KIM M S, SONG I B, et al.. Subacute (28 day) toxicity of surfactinc, a lipopeptide produced by Bacillus subtilis, in rats [J]. J. Health Sci., 2009, 55(3):351-355. |
16 | MIKKOLA R, KOLARI M, ANDERSSON M A, et al.. Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis [J]. FEBS J., 2010, 267(13):4068-4074. |
17 | NIEMINEN T, RINTALUOMA N, ANDERSSON M, et al.. Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk [J]. Vet. Microbiol., 2007, 124(3-4):329-339. |
18 | MADSLIEN E H, RØNNING H T, LINDBÄCK T, et al.. Lichenysin is produced by most Bacillus licheniformis strains [J]. J. Appl. microbiol., 2013, 115(4):1068-1080. |
19 | DYBWAD M, GRANUM P E, BRUHEIM P, et al.. Characterization of airborne bacteria at an underground subway station [J]. Appl. Environ. Microbiol., 2012, 78(6):1917-1929. |
20 | FROM C, HORMAZABAL V, GRANUM P E. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice [J]. Int. J. Food Microbiol., 2007, 115(3):319-324. |
21 | PEDERSEN P B, BJØRNVAD M E, RASMUSSEN M D, et al.. Cytotoxic potential of industrial strains of Bacillus sp. [J]. Regul. Toxicol. Pharm., 2002, 36(2):155-161. |
22 | GRAY K M, BANADA P P, O'NEAL E, et al.. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species [J]. J. Clin. Microbiol, 2005, 43(12):5865-5872. |
23 | ELLINGTON M J, EKELUND O, AARESTRUP F M, et al.. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee [J]. Clin. Microbiol. Infect., 2017, 23(1):2-22. |
24 | OWUSU-KWARTENG J, WUNI A, AKABANDA F, et al.. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products [J/OL]. BMC Microbiol., 2017, 17(1):65 [2020-11-20]. . |
25 | BEATTIE S H, WILLIAMS A G. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay [J]. Lett. Appl. Microbiol., 1999, 28(3):221-225. |
26 | LEE N, KIM M D, CHANG H J, et al.. Genetic diversity, resistanceantimicrobial, toxin gene profiles, and toxin production ability of Bacillus cereus isolates from Doenjang, a Korean fermented soybean paste [J/OL]. J. Food Safety, 2017, 37(4):12363 [2020-11-20]. . |
27 | MARTIN, TRAPECAR, THOMAS, et al.. The use of a porcine intestinal cell model system for evaluating the food safety risk of Bacillus cereus probiotics and the implications for assessing enterotoxigenicity [J]. APMIS, 2011, 119:877-884. |
28 | AQUILINA G, BORIES G, CHESSON A, et al.. Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition [J/OL]. Efsa J., 2014, 12(5):3665 [2020-11-20]. . |
29 | FAGERLUND A, LINDBACK T, STORSET A K, et al.. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia [J]. Microbiology, 2008, 154(3):693-704. |
30 | WANG P, HENNING S M, HEBER D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols [J/OL]. PLoS ONE, 2010, 5(4):e10202 [2020-11-20]. . |
31 | ZHENG J T, RIX U, ZHAO L, et al.. Cytotoxic activities of new jadomycin derivatives [J]. J. Antibiot., 2005, 58(6):405-408. |
32 | 吉哈利,王玉恒,于子淇.不同培养条件对vero细胞的增殖及其检测病毒含量的影响[J].甘肃畜牧兽医,2020,50(5):52-56. |
JI H L, WANG Y H, YU Z Q. Effects of different culture conditions on the proliferation of vero cells and detection of virus content [J]. Gansu Anim. Hus. Vet., 2020, 50(5):52-56. | |
33 | 曹端广, 杨凤云, 夏汉庭, 等.MTT比色法观察加味阳和汤对SD乳鼠成骨细胞增殖的影响[J].江西中医药, 2019, 50(9):60-62. |
CAO D G, YANG F Y, XIA H T, et al.. Effect of Jiawei Yanghe Decoction on the proliferation of osteoblasts in SD rats by MTT colorimetry [J]. Jiangxi J. Trad. Chin. Med., 2019, 50(9):60-62. | |
34 | 张航,魏曼琳,王思珍.CCK-8法与MTT法检测乳腺上皮细胞活性的条件比较研究[J].黑龙江畜牧兽医,2017(4):117-119. |
ZHANG H, WEI M L, WANG S Z. Comparison of conditions between CCK-8 assay and MTT assay for detecting the activity of mammary epithelial cells [J]. Heilongjiang Anim. Sci. Vet. Med., 2017(4):117-119. | |
35 | BLANCH A R, MÉNDEZ J, CASTEL S, et al.. Comparison of procedures for the extraction of supernatants and cytotoxicity tests inVero cells, applied to assess the toxigenic potential of Bacillus spp. and Lactobacillus spp., intended for use as probiotic strains [J]. J. Microbiol. Meth., 2014, 103:64-69. |
36 | ÖZDEMIR F, ARSLAN S. Molecular characterization and toxin profiles of Bacillus spp. isolated from retail fish and ground beef [J]. J. Food Sci., 2019, 84(3):548-556. |
37 | GUINEBRETIÈRE M H, BROUSSOLLE V, NGUYEN-THE C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains [J]. J. Clin. Microbiol., 2002, 40(8):3053-3056. |
38 | EHLING-SCHΜLZ M, FRICKER M, SCHERER S. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay [J]. Fems. Microbiol. Lett., 2010, 232(2):189-195. |
39 | TOMPKINS T A, HAGEN K E, WALLACE T D, et al.. Safety evaluation of two bacterial strains used in Asian probiotic products [J]. Can. J. Microbiol., 2008, 54(5):391-400. |
40 | MANHAR A K, SAIKIA D, BASHIR Y, et al.. Invitro evaluation of celluloytic Bacillus amyloliquefaciens AMS1 isolated from traditional fermented soybean (Churpi) as an animal probiotic [J]. Res. Vet. Sci., 2015, 99:149-156. |
41 | 沈雪,王昊,关爽,等.细胞毒性在食品安全性中的应用研究[J].食品科学,2008(9):621-623. |
SHEN X, WANG H, GUAN S, et al.. Summary of application of cytotoxicity technology in food safety [J]. Food Sci., 2008(9):621-623. | |
42 | 王文娟, 蔡小芳, 唐洁, 等.体外生物测定法在食品接触材料安全性评价中的应用研究进展[J].食品科学, 2019, 40(15):277-284. |
WANG W J, CAI X F, TANG J, et al.. Application of in vitro bioassays in safety evaluation of food contact materials: a review [J]. Food Sci., 2019, 40(15):277-284. | |
43 | FROM C, PUKALL R, SCHUMANN P, et al.. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group [J]. Appl. Environ. Microbiol., 2005, 71(3):1178-1183. |
44 | 朱奎,丁双阳,沈建忠.益生芽孢杆菌中潜在风险因子分析[C]// 中国畜牧兽医学会兽医食品卫生学分会. 中国畜牧兽医学会兽医食品卫生学分会第十五次学术交流会论文集.济南,2019:89. |
[1] | 李海燕, 张婷, 李新畅, 张玲, 王培, 鲍民胡. 一株拮抗葡萄灰霉病菌的贝莱斯芽孢杆菌筛选及鉴定[J]. 中国农业科技导报, 2025, 27(8): 110-118. |
[2] | 李海利, 杨帆, 陈建豪, 杨康, 杨夷平, 段进刚, 李斌, 张婉琪, 马春江. 类芽孢杆菌对携带NDM基因的超级耐药大肠杆菌的抑菌活性分析[J]. 中国农业科技导报, 2025, 27(8): 119-131. |
[3] | 王娇, 李文巧, 沈凤英, 李亚宁, 刘大群. 白术疫病拮抗菌与化学杀菌剂复配及其协同增效作用[J]. 中国农业科技导报, 2025, 27(4): 133-139. |
[4] | 金若珩, 李晓宇, 姚经武, 王蓓蓓, 曹春霞, 黄大野. 苏云金芽孢杆菌对茶尺蠖肠道细菌多样性的影响[J]. 中国农业科技导报, 2025, 27(2): 141-149. |
[5] | 孙志康, 李力群, 郝捷, 吴晗, 吴娜, 郑超, 季嫱, 李选文, 陈晨. CRISPRCas系统在枯草芽孢杆菌基因组编辑中的研究进展[J]. 中国农业科技导报, 2025, 27(2): 24-32. |
[6] | 曹轶, 崔文靖, 马瑞强. 大豆根瘤菌定向微生态研究与应用[J]. 中国农业科技导报, 2024, 26(4): 215-224. |
[7] | 王懿珺, 黄火清, 苏小运. 双功能脱毒用酿酒酵母的构建[J]. 中国农业科技导报, 2024, 26(2): 226-233. |
[8] | 贺春萍, 樊兰艳, 吴贺, 梁艳琼, 吴伟怀, 李锐, 郑服丛. 枯草芽孢杆菌Czk1脂肽物质对橡胶树炭疽病和白粉病的抑制效果研究[J]. 中国农业科技导报, 2023, 25(6): 126-134. |
[9] | 牛营超, 王星, 郭青云, 戴小华, 袁小勇, 陈琳. 棉花立枯病拮抗细菌的分离鉴定及抑菌活性[J]. 中国农业科技导报, 2023, 25(12): 138-144. |
[10] | 郝变青, 马利平, 赵永胜, 石文鑫, 王建雄, 景玉川. BC98-Ⅰ和B96-Ⅱ发酵液对马铃薯的防病促生作用及对土壤酶活性的影响[J]. 中国农业科技导报, 2022, 24(8): 116-123. |
[11] | 马聪聪, 罗泽华, 蔡斌, 刘好宝, 王云山, 马锐, 顾金刚. 利于高地芽孢杆菌YC-9生长和芽孢形成的碳源筛选[J]. 中国农业科技导报, 2022, 24(7): 77-85. |
[12] | 彭田伟, 谢会雅, 李思军, 刘怡轩, 帅开峰, 彭媛媛, 王青, 李迪秦. 复硝酚钠和枯草芽孢杆菌复配对烟苗生长和生理指标的影响[J]. 中国农业科技导报, 2022, 24(4): 154-161. |
[13] | 梁艳琼, 李锐, 吴伟怀, 习金根, 谭施北, 黄兴, 陆英, 贺春萍, 易克贤. 枯草芽孢杆菌Czk1挥发物混合活性组分对橡胶灵芝菌的抑菌机理[J]. 中国农业科技导报, 2022, 24(2): 152-159. |
[14] | 潘梦诗, 郭文阳, 周留柱, 邓丽, 苗建利, 徐宏光, 张宗源, 亓兰达. 贝莱斯芽孢杆菌菌剂对花生白绢病的田间防效及作用机理研究[J]. 中国农业科技导报, 2022, 24(11): 130-136. |
[15] | 王凯强, 杨雪, 李常风, 段晓, 彭晴, 乔宇, 石波. 响应面法优化低聚木糖诱导大豆抗毒素合成条件[J]. 中国农业科技导报, 2022, 24(10): 208-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||