Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (12): 30-38.DOI: 10.13304/j.nykjdb.2024.0156
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Zhan ZHAO1(), Xiaoting WANG1(
), Lifeng ZHANG2, Jinhe ZHAO2, Yuhong YU2, Junhua LI2, Zhanqing WU2
Received:
2024-03-04
Accepted:
2024-07-13
Online:
2024-12-15
Published:
2024-12-17
Contact:
Xiaoting WANG
赵展1(), 王晓婷1(
), 张黎凤2, 赵津禾2, 于玉红2, 李军华2, 吴占清2
通讯作者:
王晓婷
作者简介:
赵展 E-mail:13525579383@163.com;
基金资助:
CLC Number:
Zhan ZHAO, Xiaoting WANG, Lifeng ZHANG, Jinhe ZHAO, Yuhong YU, Junhua LI, Zhanqing WU. Transcriptome Analysis of Watermelon Responses to Low Nitrogen Stress[J]. Journal of Agricultural Science and Technology, 2024, 26(12): 30-38.
赵展, 王晓婷, 张黎凤, 赵津禾, 于玉红, 李军华, 吴占清. 西瓜对低氮胁迫响应的转录组分析[J]. 中国农业科技导报, 2024, 26(12): 30-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2024.0156
Fig. 1 Phenotype of watermelon seedling under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments of same time at P<0.05 level.
样品 Sample | 有效数据 Clean reads | 比对数据 Mapped reads | 比对率 Mapping ratio/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|
CK | 44 680 604 | 43 215 897 | 96.73 | 91.57 | 45.52 |
N1 | 42 755 765 | 41 534 388 | 97.16 | 91.05 | 45.98 |
N3 | 44 968 308 | 43 682 840 | 97.14 | 91.43 | 44.94 |
Table 1 Transcriptome sequencing data quality statistics of watermelon in different N contents
样品 Sample | 有效数据 Clean reads | 比对数据 Mapped reads | 比对率 Mapping ratio/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|
CK | 44 680 604 | 43 215 897 | 96.73 | 91.57 | 45.52 |
N1 | 42 755 765 | 41 534 388 | 97.16 | 91.05 | 45.98 |
N3 | 44 968 308 | 43 682 840 | 97.14 | 91.43 | 44.94 |
样品 Sample | 差异表达基因数量 Number of DEGs | ||
---|---|---|---|
总计 Total | 上调 Up-regulated | 下调 Down-regulated | |
CK/N1 | 121 | 34 | 87 |
N1/N3 | 1 184 | 843 | 341 |
CK/N3 | 516 | 327 | 189 |
Table 2 DEGs among treatments
样品 Sample | 差异表达基因数量 Number of DEGs | ||
---|---|---|---|
总计 Total | 上调 Up-regulated | 下调 Down-regulated | |
CK/N1 | 121 | 34 | 87 |
N1/N3 | 1 184 | 843 | 341 |
CK/N3 | 516 | 327 | 189 |
基因ID Gene ID | 调控 regulated | 基因注释 Gene annotation | Pfam注释 Pfam_annotation |
---|---|---|---|
Cla97C01G023010 | 下调Down | 类Fe2+转运蛋白 Fe2+ transport protein 1-like | ZIP 锌转运体 ZIP Zinc transporter |
Cla97C04G071110 | 下调Down | 类ORG2 转录因子 Transcription factor ORG2-like | HLH的DNA结合域 Helix-loop-helix DNA-binding domain |
Cla97C07G136330 | 下调Down | 琥珀酸脱氢酶[泛醌]铁硫亚基3 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit 3 | 铁硫簇结合域 Iron-sulfur cluster binding domain; |
Cla97C03G057100 | 上调 Up | 酪氨酸酶/多酚氧化酶 Polyphenol oxidase | 酪氨酸酶的共同中心结构域,多酚氧化酶中间结构域 Common central domain of tyrosinase, polyphenol oxidase middle domain |
Cla97C08G150960 | 下调Down | 海马丰富的转录样蛋白 Hippocampus abundant transcript-like protein 1 | MFS/糖转运蛋白 MFS/sugar transport protein |
Cla97C02G040720 | 下调Down | 烟酰胺合成酶1 Nicotianamine synthase 1 | 烟胺合成酶蛋白 Nicotianamine synthase protein |
Cla97C02G034900 | 下调Down | 推测蛋白Csa_2G423710 Hypothetical protein Csa_2G423710 | — |
Cla97C06G124190 | 下调Down | 预测蛋白LOC101215023 Uncharacterized protein LOC101215023 | 氰菊酯HHE阳离子结合域,锌带,CHY锌指 Hemerythrin HHE cation binding domain, zinc-ribbon, CHY zinc finger |
Cla97C02G034910 | 下调Down | 类Nramp3 金属转运体 Metal transporter Nramp3-like | 天然抗性相关巨噬蛋白 Natural resistance-associated macrophage protein |
Cla97C04G071130 | 下调Down | bHLH100转录因子 Transcription factor bHLH100-like | HLH的DNA结合域 Helix-loop-helix DNA-binding domain |
Cla97C01G021100 | 下调Down | 预测蛋白 Uncharacterized protein | 未知功能的类PDDEXK家族 PDDEXK-like family of unknown function |
Cla97C05G091150 | 下调Down | 质体脂相关蛋白,叶绿体异构体X1 Probable plastid-lipid-associated protein 14, chloroplastic isoform X1 | 蛋白激酶结构域,PAP原纤蛋白 Protein kinase domain, PAP_fibrillin |
Table 3 DEGs and functional annotation between CK and N1
基因ID Gene ID | 调控 regulated | 基因注释 Gene annotation | Pfam注释 Pfam_annotation |
---|---|---|---|
Cla97C01G023010 | 下调Down | 类Fe2+转运蛋白 Fe2+ transport protein 1-like | ZIP 锌转运体 ZIP Zinc transporter |
Cla97C04G071110 | 下调Down | 类ORG2 转录因子 Transcription factor ORG2-like | HLH的DNA结合域 Helix-loop-helix DNA-binding domain |
Cla97C07G136330 | 下调Down | 琥珀酸脱氢酶[泛醌]铁硫亚基3 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit 3 | 铁硫簇结合域 Iron-sulfur cluster binding domain; |
Cla97C03G057100 | 上调 Up | 酪氨酸酶/多酚氧化酶 Polyphenol oxidase | 酪氨酸酶的共同中心结构域,多酚氧化酶中间结构域 Common central domain of tyrosinase, polyphenol oxidase middle domain |
Cla97C08G150960 | 下调Down | 海马丰富的转录样蛋白 Hippocampus abundant transcript-like protein 1 | MFS/糖转运蛋白 MFS/sugar transport protein |
Cla97C02G040720 | 下调Down | 烟酰胺合成酶1 Nicotianamine synthase 1 | 烟胺合成酶蛋白 Nicotianamine synthase protein |
Cla97C02G034900 | 下调Down | 推测蛋白Csa_2G423710 Hypothetical protein Csa_2G423710 | — |
Cla97C06G124190 | 下调Down | 预测蛋白LOC101215023 Uncharacterized protein LOC101215023 | 氰菊酯HHE阳离子结合域,锌带,CHY锌指 Hemerythrin HHE cation binding domain, zinc-ribbon, CHY zinc finger |
Cla97C02G034910 | 下调Down | 类Nramp3 金属转运体 Metal transporter Nramp3-like | 天然抗性相关巨噬蛋白 Natural resistance-associated macrophage protein |
Cla97C04G071130 | 下调Down | bHLH100转录因子 Transcription factor bHLH100-like | HLH的DNA结合域 Helix-loop-helix DNA-binding domain |
Cla97C01G021100 | 下调Down | 预测蛋白 Uncharacterized protein | 未知功能的类PDDEXK家族 PDDEXK-like family of unknown function |
Cla97C05G091150 | 下调Down | 质体脂相关蛋白,叶绿体异构体X1 Probable plastid-lipid-associated protein 14, chloroplastic isoform X1 | 蛋白激酶结构域,PAP原纤蛋白 Protein kinase domain, PAP_fibrillin |
1 | DU Q G, YANG J, SYED MUHAMMAD SADIQ S, et al.. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes [J]. J. Integr. Agric., 2021,20(8):2043-2055. |
2 | SHIN S Y, JEONG J S, LIM J Y, et al.. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies [J]. BMC Genom., 2018,19(1):1-20. |
3 | PENG S B, BURESH R J, HUANG J L, et al.. Improving nitrogen fertilization in rice by sitespecific N management.a review [J]. Agron. Sustain. Dev., 2010,30(3):649-656. |
4 | YANG F, ZHANG Z L, BARBERÁN A, et al.. Nitrogen-induced acidification plays a vital role driving ecosystem functions:insights from a 6-year nitrogen enrichment experiment in a Tibetan alpine meadow [J/OL].Soil Biol. Biochem., 2021,153:108107 [2024-02-20]. . |
5 | GAUDINIER A, RODRIGUEZ-MEDINA J, ZHANG L F, et al.. Transcriptional regulation of nitrogen-associated metabolism and growth [J]. Nature, 2018,563:259-264. |
6 | SHI X L, CUI F, HAN X Y, et al.. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204 [J]. Mol. Plant, 2022,15(9):1440-1456. |
7 | ZHOU Z H, WANG C K, ZHENG M H, et al.. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition [J]. Soil Biol. Biochem., 2017,115:433-441. |
8 | LUO L, RAN L, RASOOL Q Z, et al.. Integrated modeling of U.S. agricultural soil emissions of reactive nitrogen and associated impacts on air pollution,health,and climate [J]. Environ. Sci. Technol., 2022,56(13):9265-9276. |
9 | LIU Q, CHEN X B, WU K, et al.. Nitrogen signaling and use efficiency in plants:what’s new? [J]. Curr.Opin.Plant Biol., 2015,27:192-198. |
10 | WANG G, WANG J, YAO L, et al.. Transcriptome and metabolome reveal the molecular mechanism of barley genotypes underlying the response to low nitrogen and resupply [J/OL]. Int. J. Mol. Sci., 2023,24(5):4706 [2024-02-20]. . |
11 | SCHEURWATER I, KOREN M, LAMBERS H, et al.. The contribution of roots and shoots to whole plant nitrate reduction in fast‐and slow‐growing grass species [J]. J.Exp.Bot., 2002,53(374):1635-1642. |
12 | MIFLIN B J. Distribution of nitrate and nitrite reductase in barley [J]. Nature, 1967,214:1133-1134. |
13 | NAWAZ M A, WANG L M, JIAO Y Y, et al.. Pumpkin rootstock improves nitrogen use efficiency of watermelon scion by enhancing nutrient uptake,cytokinin content,and expression of nitrate reductase genes [J]. Plant Growth Regul., 2017,82(2):233-246. |
14 | LUO J, LI H, LIU T X, et al.. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability [J]. J. Exp. Bot., 2013,64(14):4207-4224. |
15 | SAENGWILAI P, TIAN X L, LYNCH J P. Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize [J]. Plant Physiol., 2014,166(2):581-589. |
16 | WEI S S, WANG X Y, SHI D Y, et al.. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions [J]. Plant Physiol.Biochem., 2016,105:118-128. |
17 | HE L, TENG L, TANG X,et al.. Agro-morphological and metabolomics analysis of low nitrogen stress response in Axonopus compressus [J/OL]. Aob Plants, 2021,13(4):plab022 [2024-02-20] . . |
18 | 董玥,陈雪平,赵建军,等.低氮胁迫不同氮效率基因型茄子光合特性差异[J].华北农学报,2009,24(1):181-184. |
DONG Y, CHEN X P, ZHAO J J, et al.. Differences of photosynthetic characteristics in the nitrogen efficiency genotypes of eggplant under low nitrogen stress [J]. Acta Agric. Boreali-Sin., 2009,24(1):181-184. | |
19 | 李强,罗延宏,余东海,等.低氮胁迫对耐低氮玉米品种苗期光合及叶绿素荧光特性的影响[J].植物营养与肥料学报,2015,21(5):1132-1141. |
LI Q, LUO Y H, YU D H, et al.. Effects of low nitrogen stress on photosynthetic characteristics and chlorophyll fluorescence parameters of maize cultivars tolerant to low nitrogen stress at the seedling stage [J]. J. Plant Nutr. Fert., 2015,21(5):1132-1141. | |
20 | LI L, GAO W, PENG Q,et al.. Two soybean bHLH factors regulate response to iron deficiency [J]. J.Integr.Plant Biol.,2018,60(7):608-622. |
21 | ZHANG C, HOU Y, HAO Q, et al.. Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress [J/OL]. PLoS One,2015,10(4):e0125174 [2024-02-20]. . |
22 | QU B Y, HE X, WANG J, et al.. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input [J]. Plant Physiol., 2015,167(2):411-423. |
23 | TANG Y T, LI X, LU W, et al.. Enhanced photorespiration in transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress [J]. Plant Physiol. Biochem., 2018,130:577-588. |
24 | 肖燕,姚珺玥,刘冬,等.甘蓝型油菜响应低氮胁迫的表达谱分析[J].作物学报,2020,46(10):1526-1538. |
XIAO Y, YAO J Y, LIU D, et al.. Expression profile analysis of low nitrogen stress in Brassica napus [J]. Acta Agron. Sin., 2020,46(10):1526-1538. | |
25 | YAN H, SHI H, HU C, et al.. Transcriptome differences in response mechanisms to low-nitrogen stress in two wheat varieties [J/OL]. Int. J. Mol. Sci., 2021,22(22):12278 [2024-02-20]. . |
26 | WANG W, XIN W, CHEN N,et al.. Transcriptome and co-expression network analysis reveals the molecular mechanism of rice root systems in response to low-nitrogen conditions [J/OL].Int. J. Mol. Sci., 2023,24(6):5290 [2024-02-20]. . |
27 | ALKHADER A M F, QARYOUTI M M, OKASHA T M. Effect of nitrogen on yield, quality, and irrigation water use efficiency of drip fertigated grafted watermelon (Citrullus lanatus) grown on a calcareous soil [J]. J. Plant Nutr., 2019,42(2):1-12. |
28 | 杜少平,马忠明,唐超男,等. 基于SPAD的西瓜氮素营养诊断与推荐施肥技术研究 [J]. 中国土壤与肥料, 2023 (12):200-209. |
DU S P, MA Z M, TANG C N, et al.. Study on nitrogen nutrition diagnosis and fertilizer recommendation of watermelon based on SPAD value [J]. Soil Fert. Sci. China, 2023 (12):200-209. | |
29 | 张婷婷,孟丽丽,刘晓蕊,等.马铃薯氮代谢对低氮胁迫的响应及转录组分析[J].西北农林科技大学学报(自然科学版),2022,50(8):15-26. |
ZHANG T T, MENG L L, LIU X R,et al.. Response of nitrogen metabolism of potato to low nitrogen stress and transcriptome analysis [J]. J. Northwest A&F Univ. (Nat. Sci.), 2022,50(8):15-26. | |
30 | HE X, QU B Y, LI W J,et al.. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield [J]. Plant Physiol.,2015,169(3):1991-2005. |
31 | WANG Y, ZHAO Y, WANG S,et al.. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress [J]. Plant Cell Environ.,2021,44(2):559-573. |
[1] | Shuo SHI, Yu FENG, Liang LI, Rui MENG, Yanze ZHANG, Xiurong YANG. Transcriptome Analysis of Resistance to Sharp Eyespot of Wheat Mediated by Piriformospora indica and Key Genes Screening [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 133-145. |
[2] | Lanting XIANG, Shuhui SONG, Lijuan LIU, Xiaoling SHE, Jiahua ZHOU, Baogang WANG, Hong CHANG, Chao ZHANG, Daqi FU, Yunxiang WANG. Effect of Different Storage Temperatures on Quality of Jingcai 1 Watermelon [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 137-145. |
[3] | Jiarui XU, Yiru WANG, Shaogeng ZHAO, Kun LI, Jun ZHENG. Functional Study and Transcriptome Analysis of Corn Gene ZmCCoAOMT1 Involved in Lignin Synthesis Pathway [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 30-43. |
[4] | Lin ZHANG, Yantao YANG, Lili SONG, Shiping MAO. Current Situation and High Quality Development Countermeasures of Watermelon and Muskmelon Industry in Beijing [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 20-27. |
[5] | ZHANG Wenyun1, ZHANG Jiancheng2, YAO Jingzhen2*. Comparative Transcriptome Analysis of Wheat Leaf in Response to Low Nitrogen Stress#br# [J]. Journal of Agricultural Science and Technology, 2020, 22(11): 26-34. |
[6] | LI Peng-fei, HUO Xiu-ai, CHENG Yong-qiang, DAI Liang, YANG Bing-yan, DUAN Hui-ju. Assessment of Genetic Diversity in Watermelon Based on SRAP Analysis [J]. , 2013, 15(2): 89-96. |
[7] | Gao Dong1, ZHOU Hong-pei2. The Discussion of Planting Density of Sweet Potato Intercropped with Watermelon in Greenhouse [J]. , 2009, 11(S2): 63-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||