Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (7): 77-85.DOI: 10.13304/j.nykjdb.2021.0096
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Congcong MA1,2,3(), Zehua LUO2, Bin CAI1, Haobao LIU1(
), Yunshan WANG3, Rui MA2, Jingang GU2(
)
Received:
2021-01-27
Accepted:
2021-07-07
Online:
2022-07-15
Published:
2022-08-15
Contact:
Haobao LIU,Jingang GU
马聪聪1,2,3(), 罗泽华2, 蔡斌1, 刘好宝1(
), 王云山3, 马锐2, 顾金刚2(
)
通讯作者:
刘好宝,顾金刚
作者简介:
马聪聪 E-mail: 15612884827@163.com
基金资助:
CLC Number:
Congcong MA, Zehua LUO, Bin CAI, Haobao LIU, Yunshan WANG, Rui MA, Jingang GU. Screening of Carbon Sources for Growth and Spore Formation of Bacillus altitudinis YC-9[J]. Journal of Agricultural Science and Technology, 2022, 24(7): 77-85.
马聪聪, 罗泽华, 蔡斌, 刘好宝, 王云山, 马锐, 顾金刚. 利于高地芽孢杆菌YC-9生长和芽孢形成的碳源筛选[J]. 中国农业科技导报, 2022, 24(7): 77-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0096
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
D-乳糖 D-lactose | 170 | +++++ | N-乙酰-D-葡萄糖胺N-acetyl-D-glucosamine | 205 | ++++ | D-海藻糖 D-trehalose | 192 | + |
L-岩藻糖 L-fucose | 168 | +++++ | D-糖质酸 D-saccharic | 155 | +++ | D-纤维二糖 D-cellobiose | 196 | + |
L-鼠李糖 L-rhamnose | 172 | +++++ | N-乙酰-β-D-甘露糖胺N-acetyl-β-D-annosamine | 190 | +++ | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 201 | + |
3-甲基-D-葡萄糖 3-methyl-D-glucose | 189 | +++++ | N-乙酰-D-半乳糖胺N-acetyl-D-galactosamine | 160 | +++ | D-葡萄糖-6-磷酸 D-glucose-6-phosphate | 195 | + |
D-棉子糖 D-raffinose | 190 | +++++ | D-乳酸甲酯 D-methyl lactate | 155 | +++ | D-甘露醇 D-mannitol | 211 | + |
水苏糖 Stachyose | 152 | +++++ | α-酮戊二酸 α-ketoglutarate | 182 | +++ | L-苹果酸 L-malic acid | 222 | + |
D-松二糖 D-turanose | 170 | +++++ | α-丁酮酸 α-ketobutyric acid | 143 | +++ | L-精氨酸 L-arginine | 196 | + |
蜜二糖 Melibiose | 186 | +++++ | 葡萄糖酸 Gluconic acid | 182 | +++ | L-谷氨酸 L-glutamatic acid | 208 | + |
D-山梨醇 D-sorbitol | 181 | +++++ | 吐温40 Tween 40 | 201 | +++ | L-天冬氨酸 L-aspartic acid | 221 | + |
肌苷 Inosine | 183 | +++++ | 糊精 Dextrin | 186 | +++ | D-天冬氨酸 D-aspartic acid | 224 | + |
肌醇 Inositol | 196 | +++++ | D-甘露糖 D-mannose | 211 | ++ | 甘氨酸-L-脯氨酸 Glycine-L-proline | 185 | + |
果胶 Pectin | 215 | +++++ | D-苹果酸 D-malic acid | 138 | ++ | 葡萄糖醛酸 Glucuronic acid | 179 | + |
L-丙氨酸 L-alanine | 186 | +++++ | 柠檬酸 Citric acid | 205 | ++ | 葡糖醛酰胺 Glucuronamide | 132 | + |
Table 1 Growth and spore yields of Bacillus altitudinis YC-9 by using different carbon sources on GenⅢ plate
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
D-乳糖 D-lactose | 170 | +++++ | N-乙酰-D-葡萄糖胺N-acetyl-D-glucosamine | 205 | ++++ | D-海藻糖 D-trehalose | 192 | + |
L-岩藻糖 L-fucose | 168 | +++++ | D-糖质酸 D-saccharic | 155 | +++ | D-纤维二糖 D-cellobiose | 196 | + |
L-鼠李糖 L-rhamnose | 172 | +++++ | N-乙酰-β-D-甘露糖胺N-acetyl-β-D-annosamine | 190 | +++ | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 201 | + |
3-甲基-D-葡萄糖 3-methyl-D-glucose | 189 | +++++ | N-乙酰-D-半乳糖胺N-acetyl-D-galactosamine | 160 | +++ | D-葡萄糖-6-磷酸 D-glucose-6-phosphate | 195 | + |
D-棉子糖 D-raffinose | 190 | +++++ | D-乳酸甲酯 D-methyl lactate | 155 | +++ | D-甘露醇 D-mannitol | 211 | + |
水苏糖 Stachyose | 152 | +++++ | α-酮戊二酸 α-ketoglutarate | 182 | +++ | L-苹果酸 L-malic acid | 222 | + |
D-松二糖 D-turanose | 170 | +++++ | α-丁酮酸 α-ketobutyric acid | 143 | +++ | L-精氨酸 L-arginine | 196 | + |
蜜二糖 Melibiose | 186 | +++++ | 葡萄糖酸 Gluconic acid | 182 | +++ | L-谷氨酸 L-glutamatic acid | 208 | + |
D-山梨醇 D-sorbitol | 181 | +++++ | 吐温40 Tween 40 | 201 | +++ | L-天冬氨酸 L-aspartic acid | 221 | + |
肌苷 Inosine | 183 | +++++ | 糊精 Dextrin | 186 | +++ | D-天冬氨酸 D-aspartic acid | 224 | + |
肌醇 Inositol | 196 | +++++ | D-甘露糖 D-mannose | 211 | ++ | 甘氨酸-L-脯氨酸 Glycine-L-proline | 185 | + |
果胶 Pectin | 215 | +++++ | D-苹果酸 D-malic acid | 138 | ++ | 葡萄糖醛酸 Glucuronic acid | 179 | + |
L-丙氨酸 L-alanine | 186 | +++++ | 柠檬酸 Citric acid | 205 | ++ | 葡糖醛酰胺 Glucuronamide | 132 | + |
碳源 Carbon source | 芽孢率Spore rate /% | ||
---|---|---|---|
24 h | 36 h | 48 h | |
α-D-葡萄糖 α-D-glucose | 9 c | 82 a | 88 a |
L-苹果酸 L-malic acid | 5 c | 93 a | 93 a |
D-果糖D-fructose | 14 c | 2 c | 70 b |
D-海藻糖D-trehalose | 50 a | 48 b | 47 c |
D-纤维二糖D-cellobiose | 28 b | 53 b | 40 c |
甘油 Glycerol | 47 a | 1 c | 7 d |
D-甘露醇D-mannitol | 4 c | 4 c | 5 d |
水杨苷Salicin | 5 c | 2 c | 1 d |
Table 2 Spore rate of strain YC-9 by using different carbon sources
碳源 Carbon source | 芽孢率Spore rate /% | ||
---|---|---|---|
24 h | 36 h | 48 h | |
α-D-葡萄糖 α-D-glucose | 9 c | 82 a | 88 a |
L-苹果酸 L-malic acid | 5 c | 93 a | 93 a |
D-果糖D-fructose | 14 c | 2 c | 70 b |
D-海藻糖D-trehalose | 50 a | 48 b | 47 c |
D-纤维二糖D-cellobiose | 28 b | 53 b | 40 c |
甘油 Glycerol | 47 a | 1 c | 7 d |
D-甘露醇D-mannitol | 4 c | 4 c | 5 d |
水杨苷Salicin | 5 c | 2 c | 1 d |
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
L-焦谷氨酸 L-pyroglutamic acid | 175 | +++++ | 甲酸 Formic acid | 132 | ++ | 半乳糖二酸 Galactaric acid | 160 | + |
L-丝氨酸 L-serine | 150 | +++++ | 乙酸 Acetic acid | 216 | ++ | 半乳糖醛酸内酯 Galacturonic acid lactone | 169 | + |
半乳糖醛酸 Galacturonic acid | 194 | +++++ | D-丝氨酸 D-serine | 150 | ++ | 丙酸 Propionic acid | 162 | + |
α-羟基丁酸 α-hydroxybutyric acid | 146 | +++++ | L-组氨酸 L-histone | 165 | ++ | 乙酰乙酸 Acetoacetic acid | 228 | + |
β-羟基-D,L-丁酸 β-hydroxy-D,L-butyric acid | 162 | +++++ | D-阿拉伯醇 D-arabinol | 185 | ++ | 丙酮酸甲酯 Methyl pyruvate | 134 | + |
N-乙酰神经氨酸N-acetylneuraminic acid | 165 | +++++ | 明胶 Gelatin | 191 | ++ | 水杨苷 Salicin | 204 | + |
D-果糖-6-磷酸D-fructose-6-phosphate | 195 | +++++ | γ-氨基丁酸 γ-aminobutyric acid | 209 | + | 甘油 Glycerol | 217 | + |
D-半乳糖 D-galactose | 196 | ++++ | D-蔗糖 D-sucrose | 186 | + | 奎宁酸 Quinic acid | 203 | + |
D-麦芽糖 D-maltose | 161 | ++++ | D-果糖 D-fructose | 211 | + | ρ-羟基-苯乙酸ρ-hydroxy-phenylacetic acid | 151 | + |
龙胆二糖 Gentiobiose | 188 | ++++ | α-D-葡萄糖 α-D-glucose | 223 | + | 溴代丁二酸 Bromosuccinic acid | 170 | / |
L-乳酸 L-lactic acid | 162 | ++++ | D-岩藻糖 D-fucose | 189 | + |
Table 1 Growth and spore yields of Bacillus altitudinis YC-9 by using different carbon sources on GenⅢ plate
基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield | 基质 Substrate | 高度 Height | 芽孢量 Spore yield |
---|---|---|---|---|---|---|---|---|
L-焦谷氨酸 L-pyroglutamic acid | 175 | +++++ | 甲酸 Formic acid | 132 | ++ | 半乳糖二酸 Galactaric acid | 160 | + |
L-丝氨酸 L-serine | 150 | +++++ | 乙酸 Acetic acid | 216 | ++ | 半乳糖醛酸内酯 Galacturonic acid lactone | 169 | + |
半乳糖醛酸 Galacturonic acid | 194 | +++++ | D-丝氨酸 D-serine | 150 | ++ | 丙酸 Propionic acid | 162 | + |
α-羟基丁酸 α-hydroxybutyric acid | 146 | +++++ | L-组氨酸 L-histone | 165 | ++ | 乙酰乙酸 Acetoacetic acid | 228 | + |
β-羟基-D,L-丁酸 β-hydroxy-D,L-butyric acid | 162 | +++++ | D-阿拉伯醇 D-arabinol | 185 | ++ | 丙酮酸甲酯 Methyl pyruvate | 134 | + |
N-乙酰神经氨酸N-acetylneuraminic acid | 165 | +++++ | 明胶 Gelatin | 191 | ++ | 水杨苷 Salicin | 204 | + |
D-果糖-6-磷酸D-fructose-6-phosphate | 195 | +++++ | γ-氨基丁酸 γ-aminobutyric acid | 209 | + | 甘油 Glycerol | 217 | + |
D-半乳糖 D-galactose | 196 | ++++ | D-蔗糖 D-sucrose | 186 | + | 奎宁酸 Quinic acid | 203 | + |
D-麦芽糖 D-maltose | 161 | ++++ | D-果糖 D-fructose | 211 | + | ρ-羟基-苯乙酸ρ-hydroxy-phenylacetic acid | 151 | + |
龙胆二糖 Gentiobiose | 188 | ++++ | α-D-葡萄糖 α-D-glucose | 223 | + | 溴代丁二酸 Bromosuccinic acid | 170 | / |
L-乳酸 L-lactic acid | 162 | ++++ | D-岩藻糖 D-fucose | 189 | + |
Fig.4 The growth and sporulation of Bacillus altitudinis YC-9 under different carbon sourcesNote:Different lowercase letters in figure indicate significant differences in the number of bacteria and spores of different carbon source combinations at P < 0.05 level.
Fig. 5 Growth and sporulation of Bacillus altitudinis YC-9 under different carbon sourcesNote:Different lowercase letters in figure indicate significant differences in the number of bacteria and spores of different carbon source combinations at P < 0.05 level.
1 | 李文,陈复生,丁长河,等.高地芽孢杆菌碱性蛋白酶酶学性质研究[J].河南工业大学学报(自然科学版), 2014, 35(4): 27-31. |
LI W, CHEN F S, DING C H, et al.. Study on enzymatic property of alkaline protease from Bacillus subtilis [J]. J. Henan Univ. Technol. (Nat. Sci.), 2014,35(4): 27-31. | |
2 | 徐智勇, 闫岩, 王卫, 等. 芽孢生成和萌发相关机制[J]. 中西医结合护理, 2016, 2(11):169-172. |
3 | 刘莹莹,曲甜甜,张丹雨,等.芽孢杆菌的生防活性及其发酵条件优化[J]. 贵州农业科学, 2019, 47(4):79-83. |
LIU Y Y, QU T T, ZHANG D Y, et al.. Biocontrol activity and optimization of fermentation conditions of Bacillus strains [J]. Guizhou Agric. Sci., 2019, 47(4): 79-83. | |
4 | 王晓阁.枯草芽孢杆菌研究进展与展望[J]. 中山大学研究生学刊(自然科学与医学版), 2012,33(3):14-23. |
WANG X G. Research progress and prospect of Bacillus subtilis [J]. J. Graduates Sun Yat-Sen Univ. (Nat.Sci.Med.), 2012, 33(3):14-23. | |
5 | 徐世荣, 陈骧, 吴云鹏. 细菌芽孢形成机制在微生态制剂生产中的应用[J]. 食品与生物技术学报, 2007, 26(4):121-126. |
XU S R, CHEN X, WU Y P. Application of bacterial spore formation mechanism in the production of probiotics [J]. Acta Food Biotechnol., 2007, 26(4):121-126. | |
6 | 郭荣君, 王步云, 李世东. 营养对生防菌株BH-1芽孢产量的影响研究[J]. 植物病理学报, 2005, 35(3): 283-285. |
7 | 程池, 杨梅, 李金霞, 等. Biolog微生物自动分析系统-细菌鉴定操作规程的研究[J]. 食品与发酵工业, 2006, 32(5):50-54. |
CHENG C, YANG M, LI J X, et al.. Biolog microbial identification system—study on the operating regulation of bacteria identification [J]. Food Fermentation Ind., 2006, 32(5):50-54. | |
8 | 赵斌, 何绍江. 微生物学实验[M]. 北京: 科学出版社, 2008:1-285. |
9 | 方中达. 植病研究方法[M].第三版. 北京:中国农业出版社, 1998:1-427. |
10 | ELISASHVILI V, KACHLISHVILI E, CHIKINDAS M L. Recent advances in the physiology of spore formation for Bacillus probiotic production [J]. Probiotics Antimicrob. Proteins, 2019, 11: 731-747. |
11 | 郭夏丽, 狄源宁, 王岩.枯草芽孢杆菌产芽孢条件的优化[J]. 中国土壤与肥料, 2012 (3): 99-103. |
GUO X L, DI Y N, WANG Y. Optimization of sporulation conditions of Bacillus subtilis [J]. China Soils Fert., 2012 (3): 99-103. | |
12 | 胡瑞萍, 丁贤, 李来好, 等. 响应面法优化枯草芽孢杆菌NHS1产芽孢发酵培养[J]. 生态学杂志, 2018, 37(2):605-612. |
HU R P, DING X, LI L H, et al.. Optimization of fermentation medium composition by response surface methodology for the spore production of Bacillus subtilis [J]. Chin. J. Ecol., 2018, 37(2): 605-612. | |
13 | 郑双凤, 谭石勇, 谭武贵, 等. 生防芽孢杆菌高密度发酵技术研究进展[J]. 湖南农业科学, 2017(3):120-124. |
ZHENG S F, TAN S Y, TAN W G, et al.. Research progress of high cell density fermentation technology in biocontrol of Bacillus spp [J]. Hunan Agric. Sci., 2017 (3):120-124. | |
14 | OSADCHAYA A I, KUDRIAVTSEV V A, SAFRONOVA L A, et al.. Stimulation of growth and spore formation of Bacillus subtilis by optimization of carbohydrate nutrition during submerged cultivation [J]. Prikl. Biokhim. Mikrobiol., 1997, 33(3):321-324. |
15 | KHARDZIANI T, KACHLISHVILI E, SOKHADZE K, et al.. Elucidation of Bacillus subtilis KATMIRA 1933 potential for spore production in submerged fermentation of plant raw materials [J]. Probiotics Antimicrob. Proteins, 2017, 9:435-443. |
[1] | Linghui YANG, Zhiwei DING, Li GONG, Xuejun LI, Yunping DONG, Zhenjiang LYU. Progress in Extraction, Synthetic Metabolic Pathways, and Bioactivity Research of Coffea Alkaloid Main Compounds [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 132-143. |
[2] | Min SHI, Zhenyan XU, Jian LUO. Study on Identification of Future Industries Based on Interdisciplinary [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 10-19. |
[3] | Yishuai YANG, Lin TAN, Li NIU, Ping SHU, Zihan SHI, Jie FANG, Qiulong HU. Biological Characteristics and Fungicides Screening in Laboratory of Fusarium cugenangense Causing Camellia sinensis Root Rot [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 133-141. |
[4] | Qian JIA, Sa YE, Hui ZHANG, Limin CHUAN, Jingjuan ZHAO. Research on Core Technology of Crop Biological Breeding Based on the Perspective of Core Patent Identification [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 35-48. |
[5] | Ruoheng JIN, Xiaoyu LI, Jingwu YAO, Beibei WANG, Chunxia CAO, Daye HUANG. Effects of Bacillus thuringiensi on Intestinal Bacteria in Ectropis obliqua [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 141-149. |
[6] | Xuesong JIANG, Zifan RONG, Linfeng HUANG, Qing CHEN, Zhicheng JIA, Jinpeng WANG. Research Progress on Monitoring and Early Warning Technology of Forestry Pests and Diseases [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 1-16. |
[7] | Zhichao REN, Yaohui MU, Xuyang YAO, Shue LI, Yongfeng ZHANG, Tianbao REN, Guoshun LIU, Quanyu YIN. Physiological Response of Tobacco Infected by Phytophthora to Trichoderma harzianum Inoculation Sequence [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 155-164. |
[8] | Xianguo LI, Qi DAI, Zepeng WANG, Zhaolong CHEN, Huizhuan YAN, Ning LI. Identification and Phylogenetic Analysis of Tomato CCCH-like Zinc Finger Protein Family [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 80-95. |
[9] | Shifeng MU, Xiaolei WEN, Lina FENG, Dexuan ZHAO, Suhong GAO, Peng GAO, Huixia QI. Identification and Biological Characteristics of a Colletotrichum fructicola Causing Chestnut Internal Rot Disease [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 122-128. |
[10] | Dengyang LU, Panpan TONG, Min YAN, Jingkai BAO, Mingzhe LIU, Yilei XIA, Cuiyun WU. Identification and Evaluation of Korla Pear Bud Sport with Larger Fruit Size [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 52-64. |
[11] | Peiliang CHEN, Minjun XU. Research and Application Progress of High Voltage Electrostatic Field in Aquatic [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 13-19. |
[12] | Xiao WEI, Chunxia CAO, Daye HUANG, Jingwu YAO, Qinfeng YUAN. Research Progress on Biocontrol Mechanism and Synergistic Disease Prevention of Trichoderma [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 126-135. |
[13] | Haosen YANG. Impact of Industrialization of Soybean Bio-breeding in China on Trade Dependency [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 15-22. |
[14] | Junjia CHANG, Jiaxin GAI, Gang TAO, Zhuanlonghai MO. Evaluation of the Growth-promoting Effect of Trichoderma harzianum on Tobacco and Its Induced Resistance to Black Shank Disease [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 168-176. |
[15] | Shiying ZHOU, Yanchen LIU, Yang ZHANG, Xuesong YANG, Weijun GUAN, Yang GAO. Isolational Culture and Biological Identification of Japanese Large Ear White Rabbit Bone Marrow Mesenchymal Stem Cells [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 96-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||