中国农业科技导报
2025, 27 (
):
95-104.
为解决稻谷在干燥过程中含水率预测不准确、滞后性较大以及决定系数不高等问题,采用响应面(response surface methodology,RSM)法分析干燥过程中影响稻谷含水率的主要因素,利用遗传算法(genetic algorithm,GA)对传统BP(back propagation)神经网络模型进行优化,欲建立一种基于RSM-GA的稻谷含水率预测模型。结果表明,热风温度、粮层温度、环境相对湿度在干燥过程中对稻谷含水率影响显著。以热风温度、粮层温度、环境相对湿度为预测模型的输入层,稻谷含水率为输出层,通过经验公式确定预测模型的最优中间隐含层数为10,由此建立预测模型的神经元结构为3-10-1。在进行模型训练时,最优性能表现在第15次,最小均方根误差为0.621 84×10-3,得到最优的Matlab仿真试验设置参数,当迭代至200代时,适应度值在0.019 5时趋于稳定。经过遗传算法优化后的预测模型决定系数为0.980,较传统模型提高5%;均方根误差为0.009,降低17%。综上,优化后的神经网络模型性能提高,为后续控制策略研究提供参考。