中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (10): 170-179.DOI: 10.13304/j.nykjdb.2024.0702
• 食品质量 加工储运 • 上一篇
徐源1(), 赫丁轩1, 赵丽平1, 张婷婷1, 刁婷婷1, 蔡静1, 黄雅琴1, 毕晶晶1(
), 陈琼1(
), 张巧玉2, 申雨3
收稿日期:
2024-08-29
接受日期:
2024-12-03
出版日期:
2025-10-15
发布日期:
2025-10-15
通讯作者:
毕晶晶,陈琼
作者简介:
徐源 E-mail:634343583@qq.com
基金资助:
Yuan XU1(), Dingxuan HE1, Liping ZHAO1, Tingting ZHANG1, Tingting DIAO1, Jing CAI1, Yaqin HUANG1, Jingjing BI1(
), Qiong CHEN1(
), Qiaoyu ZHANG2, Yu SHEN3
Received:
2024-08-29
Accepted:
2024-12-03
Online:
2025-10-15
Published:
2025-10-15
Contact:
Jingjing BI,Qiong CHEN
摘要:
为研究超声辅助热水回流法提取紫苏叶多糖的提取工艺及紫苏叶多糖的体外抗氧化活性,检测不同料液比、提取温度和提取时间对紫苏叶多糖得率的影响,通过响应面法优化紫苏叶多糖的提取工艺,并测定紫苏叶多糖对3种自由基的清除能力,评估其体外抗氧化活性。结果表明,紫苏叶多糖的最佳提取工艺为料液比1 g∶36 mL、提取温度77 ℃、提取时间4 h;在此条件下,紫苏叶多糖的得率为9.76%。紫苏叶多糖对1,1-二苯基-2-三硝基苯肼自由基(1,1-diphenyl-2-picrylhydrazyl, DPPH?)、2,2’-联氮-二-(3-乙基-苯并噻唑-6-磺酸)二铵盐自由基(2,2’-azinobis-3-ethylbenzthiazoline-6-sulphonate, ABTS+?)和羟基自由基(hydroxyl free radical,?OH)的清除率分别为93.04%、88.31%和72.30%,其半抑制浓度分别为0.800、0.945、0.665 mg·mL-1,表明紫苏叶多糖具有良好的清除自由基的能力。在最佳工艺条件下提取的紫苏叶多糖得率为9.76%,与预测值基本一致,提取工艺效果较好,表明该方法适合提取紫苏叶多糖。研究结果为紫苏叶产品的深度开发提供理论依据。
中图分类号:
徐源, 赫丁轩, 赵丽平, 张婷婷, 刁婷婷, 蔡静, 黄雅琴, 毕晶晶, 陈琼, 张巧玉, 申雨. 紫苏叶多糖提取工艺的优化及抗氧化活性分析[J]. 中国农业科技导报, 2025, 27(10): 170-179.
Yuan XU, Dingxuan HE, Liping ZHAO, Tingting ZHANG, Tingting DIAO, Jing CAI, Yaqin HUANG, Jingjing BI, Qiong CHEN, Qiaoyu ZHANG, Yu SHEN. Optimization of Extraction Process and Analysis of Antioxidant Activity of Polysaccharides from Perilla Leaves[J]. Journal of Agricultural Science and Technology, 2025, 27(10): 170-179.
水平 Level | 因素Factor | ||
---|---|---|---|
A:料液比 Solid-liquid ratio /(g·mL-1) | B:提取温度 Extraction temperature/℃ | C:提取时间 Extraction time /h | |
-1 | 1∶30 | 70 | 3 |
0 | 1∶35 | 80 | 4 |
+1 | 1∶40 | 90 | 5 |
表1 响应面试验因素
Table 1 Experiment factors of response surface
水平 Level | 因素Factor | ||
---|---|---|---|
A:料液比 Solid-liquid ratio /(g·mL-1) | B:提取温度 Extraction temperature/℃ | C:提取时间 Extraction time /h | |
-1 | 1∶30 | 70 | 3 |
0 | 1∶35 | 80 | 4 |
+1 | 1∶40 | 90 | 5 |
编号 Number | A:料液比 Solid-liquid ratio /(g·mL-1) | B:提取温度 Extraction temperature/℃ | C:提取时间 Extraction time/h | 得率 Yield/% |
---|---|---|---|---|
1 | 1∶30 | 70 | 4 | 7.83 |
2 | 1∶40 | 70 | 4 | 9.46 |
3 | 1∶30 | 90 | 4 | 8.51 |
4 | 1∶40 | 90 | 4 | 8.11 |
5 | 1∶30 | 80 | 3 | 8.13 |
6 | 1∶40 | 80 | 3 | 8.43 |
7 | 1∶30 | 80 | 5 | 8.51 |
8 | 1∶40 | 80 | 5 | 8.69 |
9 | 1∶35 | 70 | 3 | 8.20 |
10 | 1∶35 | 90 | 3 | 8.68 |
11 | 1∶35 | 70 | 5 | 9.20 |
12 | 1∶35 | 90 | 5 | 8.26 |
13 | 1∶35 | 80 | 4 | 9.79 |
14 | 1∶35 | 80 | 4 | 9.81 |
15 | 1∶35 | 80 | 4 | 9.75 |
16 | 1∶35 | 80 | 4 | 9.54 |
17 | 1∶35 | 80 | 4 | 9.57 |
表 2 响应面试验设计及结果
Table 2 Response surface experimental design and results
编号 Number | A:料液比 Solid-liquid ratio /(g·mL-1) | B:提取温度 Extraction temperature/℃ | C:提取时间 Extraction time/h | 得率 Yield/% |
---|---|---|---|---|
1 | 1∶30 | 70 | 4 | 7.83 |
2 | 1∶40 | 70 | 4 | 9.46 |
3 | 1∶30 | 90 | 4 | 8.51 |
4 | 1∶40 | 90 | 4 | 8.11 |
5 | 1∶30 | 80 | 3 | 8.13 |
6 | 1∶40 | 80 | 3 | 8.43 |
7 | 1∶30 | 80 | 5 | 8.51 |
8 | 1∶40 | 80 | 5 | 8.69 |
9 | 1∶35 | 70 | 3 | 8.20 |
10 | 1∶35 | 90 | 3 | 8.68 |
11 | 1∶35 | 70 | 5 | 9.20 |
12 | 1∶35 | 90 | 5 | 8.26 |
13 | 1∶35 | 80 | 4 | 9.79 |
14 | 1∶35 | 80 | 4 | 9.81 |
15 | 1∶35 | 80 | 4 | 9.75 |
16 | 1∶35 | 80 | 4 | 9.54 |
17 | 1∶35 | 80 | 4 | 9.57 |
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 7.300 0 | 9 | 0.811 4 | 40.240 0 | <0.000 1** |
A | 0.365 5 | 1 | 0.365 5 | 18.130 0 | 0.003 8* |
B | 0.159 6 | 1 | 0.159 6 | 7.920 0 | 0.026 0* |
C | 0.186 0 | 1 | 0.186 0 | 9.230 0 | 0.018 9* |
AB | 1.030 0 | 1 | 1.030 0 | 51.090 0 | 0.000 2* |
AC | 0.003 6 | 1 | 0.003 6 | 0.178 5 | 0.685 3 |
BC | 0.504 1 | 1 | 0.504 1 | 25.000 0 | 0.001 6* |
A2 | 1.950 0 | 1 | 1.950 0 | 96.480 0 | <0.000 1** |
B2 | 1.200 0 | 1 | 1.200 0 | 59.710 0 | 0.000 1* |
C2 | 1.380 0 | 1 | 1.380 0 | 68.380 0 | <0.000 1** |
残差Residuals | 0.141 2 | 7 | 0.020 2 | ||
失拟项Misfit error | 0.076 3 | 3 | 0.025 4 | 1.570 0 | 0.328 9 |
纯误差Pure error | 0.064 9 | 4 | 0.016 2 | ||
所有项 Cor Total | 7.440 0 | 16 |
表 3 响应面方差结果与分析
Table 3 Variance results and analysis of response surface experiment
方差来源 Variance source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 7.300 0 | 9 | 0.811 4 | 40.240 0 | <0.000 1** |
A | 0.365 5 | 1 | 0.365 5 | 18.130 0 | 0.003 8* |
B | 0.159 6 | 1 | 0.159 6 | 7.920 0 | 0.026 0* |
C | 0.186 0 | 1 | 0.186 0 | 9.230 0 | 0.018 9* |
AB | 1.030 0 | 1 | 1.030 0 | 51.090 0 | 0.000 2* |
AC | 0.003 6 | 1 | 0.003 6 | 0.178 5 | 0.685 3 |
BC | 0.504 1 | 1 | 0.504 1 | 25.000 0 | 0.001 6* |
A2 | 1.950 0 | 1 | 1.950 0 | 96.480 0 | <0.000 1** |
B2 | 1.200 0 | 1 | 1.200 0 | 59.710 0 | 0.000 1* |
C2 | 1.380 0 | 1 | 1.380 0 | 68.380 0 | <0.000 1** |
残差Residuals | 0.141 2 | 7 | 0.020 2 | ||
失拟项Misfit error | 0.076 3 | 3 | 0.025 4 | 1.570 0 | 0.328 9 |
纯误差Pure error | 0.064 9 | 4 | 0.016 2 | ||
所有项 Cor Total | 7.440 0 | 16 |
[1] | 何育佩,郝二伟,谢金玲,等.紫苏药理作用及其化学物质基础研究进展[J].中草药,2018,49(16):3957-3968. |
HE Y P, HAO E W, XIE J L, et al.. Research process on pharmacological effect and substance basis of Perilla frutescens [J]. Chin. Tradit. Herb. Drugs, 2018, 49(16):3957-3968. | |
[2] | 聂黎行,王馨平,康帅,等.紫苏叶和白苏叶叶色数字化表征及与花青素含量相关性研究[J].中国医院药学杂志,2024,44(21):2477-2483. |
NIE L X, WANG X P, KANG S, et al.. Digital characterization of color of Perilla leaf and white Perilla leaf and correlation with contents of anthocyanin [J]. Chin. J. Hosp. Pharm., 2024,44(21): 2477-2483. | |
[3] | 闫慧杰,蔺永刚,努尔买买提,等.紫苏的药理活性及其在动物饲料中的应用进展[J].饲料研究,2023,46(24):143-147. |
YAN H J, LIN Y G, Nulimaimaiti, et al.. Pharmacological activity of Perilla and its application in animal feed [J]. Feed. Res., 2023, 46(24):143-147. | |
[4] | 王月,赵彦巧,李建颖.超声辅助提取紫苏叶花色苷及其抗氧化活性研究[J].食品研究与开发,2022,43(4):128-135. |
WANG Y, ZHAO Y Q, LI J Y. Ultrasonic-assisted extraction of anthocyanins from Perilla leaves and antioxidant activity analysis [J]. Food Res. Dev., 2022, 43(4):128-135. | |
[5] | 余顺波,龙久铃, 陈长艳,等.紫苏的生理活性研究进展[J].贵州农业科学,2021,49(6):75-83. |
YU S B, LONG J L, CHEN C Y, et al.. Research progress on physiological activities of Perilla frutescens [J]. Guizhou Agric.Sci., 2021, 49(6): 75-83. | |
[6] | 李雪梅,尹丹,曹泽平,等.紫苏的性味归经、功效及用药禁忌考证[J].环球中医药,2021,14(12):2174-2178. |
[7] | 张良琦,李文姣,肖美凤.紫苏不同部位活性成分比较及其药理作用研究进展[J].中国中药杂志,2023,48(24):6551-6571. |
ZHANG L Q, LI W J, XIAO M F. Comparison of active components in different parts of Perilla frutescens and its pharmacological effects [J]. China J. Chin. Mater. Med., 2023,48(24):6551-6571. | |
[8] | AHMED H M, AL-ZUBAIDY A M A. Exploring natural essential oil components and antibacterial activity of solvent extracts from twelve Perilla frutescens L. Genotypes [J]. Arab. J.Chem., 2020, 13(10): 7390-7402. |
[9] | WANG Z X, TU Z C, XIE X, et al.. Perilla frutescens leaf extract and fractions:polyphenol composition,antioxidant, (α-glucosidaseenzymes,acetylcholinesterase,and tyrosinase) inhibitory, anticancer, and antidiabetic activities [J/OL]. Foods, 2021,10(2): 315 [2024-07-26]. . |
[10] | 孙广平,袁丽,方晓琳,等.紫苏叶多糖对糖尿病模型小鼠胰腺组织氧化应激及PI3K/AKT/GLUT4信号通路的影响[J].中国药房,2020,31(15):1874-1879. |
SUN G P, YUAN L, FANG X L, et al.. Effects of purple frutescens leaves polysaccharides on oxidative stress and PI3K/AKT/GLUT4 signaling pathway of pancreatic tissues in diabetes mellitus model mice [J]. China Pharm., 2020, 31(15):1874-1879. | |
[11] | 王文静,刘雪梅,张桂琴.紫苏叶多糖通过Wnt/PCP通路对慢阻肺大鼠气道炎症反应及气道重塑的作用研究[J].中医药导报,2021,27(10):37-41. |
WANG W J, LIU X M, ZHANG G Q. Effect of Perilla leaf polysaccharide on airway inflammation and airway remodeling in COPD rats through Wnt/PCP pathway [J]. Guid. J. Tradit.Chin. Med. Pharm., 2021, 27(10): 37-41. | |
[12] | CARRERO-CARRALERO C, MANSUKHANI D, RUIZ-MATUTE A I, et al.. Extraction and characterization of low molecular weight bioactive carbohydrates from mung bean (Vigna radiata) [J]. Food Chem., 2018, 266: 146-154. |
[13] | NADAR S S, RAO P, RATHOD V K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: a review [J]. Food Res. Int., 2018, 108:309-330. |
[14] | 苗笑雨,谷大海,程志斌,等.超临界流体萃取技术及其在食品工业中的应用[J].食品研究与开发,2018,39(5):209-218. |
MIAO X Y, GU D H, CHENG Z B, et al.. Applying the technology of supercritical fluid extraction in food industry [J]. Food Res. Dev., 2018, 39(5): 209-218. | |
[15] | 徐赫,李荣华,夏岩石,等.黄酮类化合物提取、分离纯化方法研究现状及展望[J].应用化工,2021,50(6):1677-1682. |
XU H, LI R H, XIA Y S, et al.. Research status and prospect of extraction and purification methods of flavonoids [J]. Appl.Chem. Ind., 2021, 50(6): 1677-1682. | |
[16] | 戴志英,郭新颖,叶青华.硫酸-蒽酮分光光度法测定灵芝功能食品中粗多糖含量[J].化学工程师,2023,37(11):25-27. |
DAI Z Y, GUO X Y, YE Q H. Determination of crude polysaccharide in Ganoderma lucidum functional food by sulfuric acid-anthrone spectrophotometry [J]. Chem. Eng., 2023, 37(11):25-27. | |
[17] | 柴美灵,李娜,乔宏萍,等.Box-Behnken法优化甘草多糖提取工艺及其体外抗氧化活性分析[J].食品工业科技,2021,42(23):192-200. |
CHAI M L, LI N, QIAO H P, et al.. Application of box-behnken design for ultrasonic-assisted extraction of Glycyrrhiza polysaccharide and its antioxidant activity analysis in vitro [J]. Sci. Technol. Food Ind., 2021, 42(23):192-200. | |
[18] | 张涵,杨城,陈桂芸,等.等离子体活化水辅助超声提取黄花菜多糖及其降糖活性[J/OL].食品工业科技,2024:1-18 [2024-07-26]. . |
ZHANG H, YANG C, CHEN G Y, et al.. Plasma activated water assis-ted ultrasonic extraction of polysaccharides from yellow cauliflower and its hypoglycemic activity [J/OL]. Sci. Technol. Food Ind., 2024:1-18 [2024-07-26]. . | |
[19] | 张家晨,秦良云,刘怡,等.响应面法优化西藏金耳多糖提取工艺研究[J].食品研究与开发,2020,41(11):113-117. |
ZHANG J C, QIN L Y, LIU Y, et al.. Study on optimization of polysaccharide extraction from Tremella aurantialba in Tibet by response surface methodology [J]. Food Res. Dev., 2020,41(11):113-117. | |
[20] | 王斌,王凤君,梁颖琪,等.玫瑰纯露提取工艺优化及其抑菌和抗氧化活性研究[J].北方园艺,2020(18):106-113. |
WANG B, WANG F J, LIANG Y Q, et al.. Study on extraction process optimization of rose hydrosol and its antibacterial and antioxidant activities [J]. Northern Hortic., 2020(18):106-113. | |
[21] | 黎楚楚,徐霖,林长松.响应面优化黄姜花根多糖提取工艺及其抗氧化活性分析[J].饲料研究,2024,47(11):109-113. |
LI C C, XU L, LIN C S. Response surface optimization of polysaccharide extraction process and antioxidant activity analysis of Hedychium flavum Roxb. root [J]. Feed. Res., 2024,47(11):109-113. | |
[22] | 陈卫,谷彩花,毕晶晶,等.商桔梗多糖提取工艺优化及其吸湿保湿、抗氧化性能研究[J].饲料工业,2024,45(17):113-119. |
CHEN W, GU C H, BI J J, et al.. Study on optimization of extraction process of polysaccharide from Shang Platycodon and its moisture-absorption-retention and antioxidant properties [J]. Feed. Ind., 2024, 45(17):113-119. | |
[23] | LI P Q, ZHOU L G, MOU Y, et al.. Extraction optimization of polysaccharide from Zanthoxylum bungeanum using RSM and its antioxidant activity [J]. Int. J. Biol. Macromol., 2015,72:19-27. |
[24] | 郭玲玲,相玉秀.超声波-微波协同辅助萃取紫苏叶黄酮工艺优化及其抗氧化活性研究[J].食品研究与开发,2020,41(18):147-154. |
GUO L L, XIANG Y X. Study on ultrasound-microwave assisted extraction process optimization of Perilla leaf flavonoids and its antioxidant activity [J]. Food Res. Dev., 2020, 41(18):147-154. | |
[25] | LI H Z, ZHANG H J, ZHANG Z J, et al.. Optimization of ultrasound-assisted enzymatic extraction and in vitro antioxidant activities of polysaccharides extracted from the leaves of Perilla frutescens [J]. Food Sci. Technol., 2020, 40(1): 36-45. |
[26] | 牛新茹,朱彤彤,高志杰,等.紫苏叶多糖分离纯化及体外抗氧化活性[J].食品研究与开发,2023,44(9):30-35. |
NIU X R, ZHU T T, GAO Z J, et al.. Separation and purification of Perilla frutescens polysaccharides and their antioxidant activities in vitro [J]. Food Res. Dev., 2023,44(9):30-35. | |
[27] | ZHANG H J, LI H Z, ZHANG Z J, et al.. Optimization of ultrasound-assisted extraction of polysaccharides from Perilla seed meal by response surface methodology:characterization and in vitro antioxidant activities [J]. J. Food Sci., 2021,86(2):306-318. |
[28] | 丁素芸,闫芝茜,刘会平,等.紫苏叶多糖的提取工艺优化及理化特性分析[J].食品研究与开发,2023,44(1):95-101. |
DING S Y, YAN Z Q, LIU H P, et al.. Optimization of extraction technology of polysaccharide from Perilla frutescens var. frutescens and its physicochemical properties [J]. Food Res.Dev., 2023, 44(1): 95-101. | |
[29] | 郎伍营,张佳怡,赵永平.紫苏叶多糖的双酶法提取工艺及其抗氧化活性研究[J].商洛学院学报,2023,37(6):63-68. |
LANG W Y, ZHANG J Y, ZHAO Y P. A study on double enzyme extraction process and antioxidant activity of Perilla leaf polysaccharide [J]. J. Shangluo Univ., 2023, 37(6):63-68. | |
[30] | 梁乐欣,黄晓辰,黄晓婷.超声波协同纤维素酶提取紫苏叶多糖的工艺条件优化及抗氧化活性分析[J].农产品加工,2022(14):27-32. |
LIANG L X, HUANG X C, HUANG X T. An experimenton using ultrasonic cleaning machine and cellulase to extract polysaccharides from Perilla leaves and their antioxidant activity [J]. Farm Prod. Process., 2022(14):27-32. |
[1] | 冯长龙, 宁辰阳, 朱艺鑫, 李树平, 黄春光. 树干绷带环形缠绕机构设计与优化研究[J]. 中国农业科技导报, 2025, 27(3): 122-132. |
[2] | 张如艳, 李绅昊, 朱奇鹏, 冯太纲, 李红波, 邢泽炳, 羡瑜. 生物炭含量对园林绿化废弃物/聚乳酸复合材料物理力学性能影响[J]. 中国农业科技导报, 2025, 27(2): 192-200. |
[3] | 冯长龙, 黄春光, 宁辰阳, 李树平, 陈科锦. 植树机挖坑机构螺旋式钻头性能特性优化研究[J]. 中国农业科技导报, 2025, 27(2): 89-98. |
[4] | 郗婧怡, 王双庆, 白一彤, 姚秀利, 黄碧璇, 李青怡, 范丽清, 黄世臣, 孙明国. 响应面法优化黑水虻处理餐厨垃圾工艺参数研究[J]. 中国农业科技导报, 2025, 27(1): 241-249. |
[5] | 傅丽君, 林潇雨, 林建华, 沈慧男, 吴勇镇. 红松茸牛肉酱加工工艺及货架期研究[J]. 中国农业科技导报, 2024, 26(6): 148-158. |
[6] | 张岚雄, 郑威, 陈源桉, 沈婧, 邹双全, 伍建榕, 倪林. 樟叶总木脂素提取工艺及其抑菌活性研究[J]. 中国农业科技导报, 2024, 26(5): 138-147. |
[7] | 刘东玲, 司皓, 郑宝江, 张玉红. 响应面法优化酶解辅助-超声提取菥蓂中的黑芥子苷[J]. 中国农业科技导报, 2024, 26(4): 225-233. |
[8] | 卢登洋, 王鑫, 唐章虎, 吴翠云, 蒲云峰, 闫敏, 鲍荆凯, 姜喜. 梨果实发育过程中酚类物质组成及抗氧化活性比较[J]. 中国农业科技导报, 2023, 25(9): 97-104. |
[9] | 李琦, 张树林, 张达娟, 贾滢暄, 王泽斌. 响应面法改良牟氏角毛藻培养基[J]. 中国农业科技导报, 2023, 25(8): 225-233. |
[10] | 赵秀英, 黄晴雯, 曹浩杰, 王杰, 李瑞姣, 聂冬霞, 韩铮, 赵志辉. 响应面法优化禾谷镰刀菌产脱氧雪腐镰刀菌烯醇及其衍生物的液体培养条件[J]. 中国农业科技导报, 2023, 25(7): 222-233. |
[11] | 刘融融, 焦连庆, 张婷, 于敏, 田义新. 基于CRITIC法优化大叶冬青瞬时高温灭菌工艺[J]. 中国农业科技导报, 2023, 25(12): 205-215. |
[12] | 李绍波, 张阔, 王佳, 李建平, 刘树腾. 基于CFD的风送喷雾装置风筒参数优化[J]. 中国农业科技导报, 2023, 25(12): 93-102. |
[13] | 王凯强, 杨雪, 李常风, 段晓, 彭晴, 乔宇, 石波. 响应面法优化低聚木糖诱导大豆抗毒素合成条件[J]. 中国农业科技导报, 2022, 24(10): 208-217. |
[14] | 梁兆超,郭显炜,宋艳娟,马填富,汪锋,王丽艳,荆瑞勇*. 响应面法优化双孢蘑菇多糖提取工艺及其体外抗氧化活性研究[J]. 中国农业科技导报, 2019, 21(8): 161-168. |
[15] | 戴阳军1,胡舰1,2,周莹2,左波1,石怡雪1. Plackett-Burman设计及响应面法优化无花果干复合酶解工艺[J]. 中国农业科技导报, 2018, 20(7): 146-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||